In diesem Lehrbuch wird der Stoff einer dreisemestrigen Anfängervorlesung zur Analysis in einer bisher nicht gekannten Prägnanz dargeboten ohne dass die Verständlichkeit der sprachlichen Darstellung dadurch vernachlässigt wird. Das Buch bietet so eine umfassende Vollständigkeit des Stoffes, die ihres Gleichen sucht.
Die Inhalte decken die in einer heutigen Bachelor-Vorlesung zum Thema üblichen Themen ab: Ein- und mehrdimensionale Differential- und Integralrechnung, gewöhnliche Differentialgleichungen, Maß- und Integrationstheorie, Differentialformen und der Satz von Stokes. Darüber hinaus sind Kapitel über metrische Räume und allgemeine mengentheoretische Topologie enthalten.
Umfasst den gesamten Stoff der Analysis-Anfängervorlesungen in einem Band Sprachlich prägnante und dadurch leicht verständliche Darstellung Enthält auf Kürze und Eleganz optimierte Beweise Includes supplementary material: sn.pub/extras
Autorentext
Prof. Dr. Anton Deitmar, Universität Tübingen, Mathematisches Institut
Inhalt
Mengentheoretische Grundlagen.- I Differential- und Integralrechnung. Die reellen Zahlen.- Folgen und Reihen.- Funktionen und Stetigkeit.- Differentialrechnung.- Integralrechnung.- Funktionenfolgen.- Metrische Räume und Topologie.- II Mehrdimensionale Reelle Analysis. Differentialrechnung in Rn.- Integration im Rn.- Gewöhnliche Differentialgleichungen.- Allgemeine Topologie.- III Maß und Integration. Maßtheorie- Integration.- LP-Räume.- Produktintegral.- IV Integration auf Mannifgaltigkeiten. Differentialformen.- Der Satz von Stokes.- A Existenz und Eindeutigkeit von R.- B Vollständigkeit.- Literaturverzeichnis.- Index.