Inhalt
VII Numerik.- §1 Gleitpunktrechnung.- §2 Fehlerabschätzung bei linearen Gleichungssystemen.- §3 Unitäre und orthogonale Matrizen.- §4 Das Verfahren von Householder.- §5 Interpolation.- §6 Die Eulersche Summenformel.- §7 Numerische Integrationsverfahren.- VIII Eigenwerte.- §1 Eigenwerte und Eigenvektoren.- §2 Berechnung des charakteristischen Polynoms.- §3 Die Jordansche Normalform.- §4 Hermitesche Matrizen.- §5 Berechnung der Eigenwerte von Tridiagonalmatrizen.- IX Funktionen mehrerer Veränderlicher.- §1 Folgen von Matrizen.- §2 Stetige Abbildungen.- §3 Fixpunktsatz und Anwendungen.- §4 Differenzierbare Abbildungen.- §5 Umkehrabbildungen und implizite Funktionen.- §6 Differentialgleichungen.- §7 Lineare Differentialgleichungen.- §8 Lineare Differenzengleichungen.- X Lineare Optimierung.- §1 Vorbereitungen.- §2 Ein Simplex-Algorithmus.- XI Stochastik.- §1 Summierbare Abbildungen.- §2 Diskrete Wahrscheinlichkeitsräume.- §3 Zufällige Veränderliche.- §4 Die Ungleichung von Tschebyscheff.- §5 Der chi-Quadrat-Test.- §6 Zufallszahlen.- §7 Erzeugung von Zufallszahlen.- XII Vektorräume und lineare Abbildungen.- §1 Vektorräume.- §2 Lineare Abbildungen.- XIII Algebra.- §1 Monoide und Gruppen.- §2 Endliche abelsche Gruppen.- §3 Ringe und Körper.- §4 Faktorielle Monoide und Ringe.- §5 Polynomringe in mehreren Unbestimmten.- §6 Symmetrische Polynome.- §7 Resultante und Diskriminante.- XIV Zahlentheorie.- §1 Die Restklassenringe von ?.- §2 Primzahlen.- §3 Primzerlegungen.- XV Primzerlegung von Polynomen.- §1 Körpererweiterungen.- §2 Endliche Körper.- §3 Primzerlegung von Polynomen über endlichen Körpern.- §4 Primzerlegung von Polynomen über ?.- XVI Boolesche Algebren.- §1 Verbände.- §2 Boolesche Algebren.- Namen- undSachverzeichnis.
VII Numerik.- §1 Gleitpunktrechnung.- §2 Fehlerabschätzung bei linearen Gleichungssystemen.- §3 Unitäre und orthogonale Matrizen.- §4 Das Verfahren von Householder.- §5 Interpolation.- §6 Die Eulersche Summenformel.- §7 Numerische Integrationsverfahren.- VIII Eigenwerte.- §1 Eigenwerte und Eigenvektoren.- §2 Berechnung des charakteristischen Polynoms.- §3 Die Jordansche Normalform.- §4 Hermitesche Matrizen.- §5 Berechnung der Eigenwerte von Tridiagonalmatrizen.- IX Funktionen mehrerer Veränderlicher.- §1 Folgen von Matrizen.- §2 Stetige Abbildungen.- §3 Fixpunktsatz und Anwendungen.- §4 Differenzierbare Abbildungen.- §5 Umkehrabbildungen und implizite Funktionen.- §6 Differentialgleichungen.- §7 Lineare Differentialgleichungen.- §8 Lineare Differenzengleichungen.- X Lineare Optimierung.- §1 Vorbereitungen.- §2 Ein Simplex-Algorithmus.- XI Stochastik.- §1 Summierbare Abbildungen.- §2 Diskrete Wahrscheinlichkeitsräume.- §3 Zufällige Veränderliche.- §4 Die Ungleichung von Tschebyscheff.- §5 Der chi-Quadrat-Test.- §6 Zufallszahlen.- §7 Erzeugung von Zufallszahlen.- XII Vektorräume und lineare Abbildungen.- §1 Vektorräume.- §2 Lineare Abbildungen.- XIII Algebra.- §1 Monoide und Gruppen.- §2 Endliche abelsche Gruppen.- §3 Ringe und Körper.- §4 Faktorielle Monoide und Ringe.- §5 Polynomringe in mehreren Unbestimmten.- §6 Symmetrische Polynome.- §7 Resultante und Diskriminante.- XIV Zahlentheorie.- §1 Die Restklassenringe von ?.- §2 Primzahlen.- §3 Primzerlegungen.- XV Primzerlegung von Polynomen.- §1 Körpererweiterungen.- §2 Endliche Körper.- §3 Primzerlegung von Polynomen über endlichen Körpern.- §4 Primzerlegung von Polynomen über ?.- XVI Boolesche Algebren.- §1 Verbände.- §2 Boolesche Algebren.- Namen- undSachverzeichnis.
Titel
Mathematik für Informatiker
Autor
Ghostwriter
EAN
9783322889096
Format
E-Book (pdf)
Hersteller
Genre
Veröffentlichung
08.03.2013
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
460
Auflage
2. Aufl. 1994
Lesemotiv
Unerwartete Verzögerung
Ups, ein Fehler ist aufgetreten. Bitte versuchen Sie es später noch einmal.