Gemäß der Intention des Buchs, auch die Geschichte der Algebra zu berücksichtigen, wurden in dieser Neuauflage diverse Faksimiles ergänzt. Begleitend zu den Faksimiles wurde insbesondere das erste Kapitel erheblich erweitert, so dass die maßgeblichen kulturhistorischen Kontexte der Epochen bis Cardano deutlicher werden. Schließlich wurden zum Kapitel über Artins Beweis des Hauptsatzes der Galois-Theorie einige Anmerkungen zum historischen und mathematischen Hintergrund hinzugefügt.
Algebra konkret und problemorientiert Leicht verständliche und kompakte Einführung für Einsteiger Gute Motivation für Galois-Theorie
Autorentext
Dr. Jörg Bewersdorff promovierte im Fach Mathematik an der Universität Bonn.
Ebenfalls im Programm von Springer Spektrum sind sein populäres Buch "Glück, Logik und Bluff" und sein Lesebuch "Statistik - wie und warum sie funktioniert".
Inhalt
Kubische Gleichungen.- Casus irreducibilis, die Geburtsstunde der komplexen Zahlen.- Biquadratische Gleichungen.- Gleichungen n-ten Grades und ihre Eigenschaften.- Die Suche nach weiteren Auflösungsformeln.- Gleichungen, die sich im Grad reduzieren lassen.- Die Konstruktion regelmäßiger Vielecke.- Auflösung von Gleichungen fünften Grades.- Die Galois-Gruppe einer Gleichung.- Algebraische Strukturen und Galois-Theorie.- Artins Version des Hauptsatzes der Galois-Theorie.