Das vorliegende Buch ist eine elementare Einführung in die Grundbegriffe der Wahrscheinlichkeitstheorie, die für ein sinnvolles Statistikstudium unentbehrlich sind. Dabei wird auf die praktische Bedeutung und Anwendbarkeit dieser Begriffe verstärkt eingegangen, was durch die Behandlung zahlreicher Beispiele erleichtert und durch viele Übungsaufgaben mit vollständigen Lösungswegen abgerundet wird. Behandelt werden folgende Gebiete: Der Wahrscheinlichkeitsbegriff, diskrete, stetige und allgemeine Zufallsvariable, spezielle Wahrscheinlichkeitsverteilungen, Gesetze der großen Zahlen und Testverteilungen. Letztere spielen eine zentrale Rolle bei den Verfahren, die im Folgeband "Elementare Einführung in die angewandte Statistik" behandelt werden.
Nun in der 7. Auflage
Autorentext
Professor Dr. rer. nat. Karl Bosch ist am Institut für angewandte Mathematik und Statistik der Universität Stuttgart-Hohenheim tätig.
Inhalt
1. Der Wahrscheinlichkeitsbegriff.- 1.1. Zufällige Ereignisse.- 1.2. Die relative Häufigkeit.- 1.3. Axiomatische Definition der Wahrscheinlichkeit nach Kolmogoroff.- 1.4. Der Begriff der Wahrscheinlichkeit nach Laplace und kombinatorische Methoden zur Berechnung von Wahrscheinlichkeiten.- 1.5. Geometrische Wahrscheinlichkeiten.- 1.6. Bedingte Wahrscheinlichkeiten und unabhängige Ereignisse.- 1.7. Bernoulli-Experimente und klassische Wahrscheinlichkeitsverteilungen.- 1.8. Der Satz von der vollständigen Wahrscheinlichkeit und die Bayessche Formel.- 1.9. Das Bernoullische Gesetz der großen Zahlen.- 1.10. Übungsaufgaben.- 2. Zufallsvariable.- 2.1. Definition einer Zufallsvariablen.- 2.2. Diskrete Zufallsvariable.- 2.3. Spezielle diskrete Verteilungen.- 2.4. Stetige Zufallsvariable.- 2.5. Spezielle stetige Verteilungen.- 2.6. Allgemeine Zufallsvariable.- 3. Gesetze der großen Zahlen.- 3.1. Die Tschebyscheffsche Ungleichung.- 3.2. Das schwache Gesetz der großen Zahlen.- 3.3. Der zentrale Grenzwertsatz.- 3.4. Übungsaufgaben.- 4. Testverteilungen.- 4.1. Die Chi-Quadrat-Verteilung.- 4.2. Die Studentsche t-Verteilung.- 4.3. Die F-Verteilung von Fisher.- 5. Ausblick.- 6. Anhang.- 6.1. Lösungen der Übungsaufgaben.- 6.2. Tafel der Verteilungsfunktion ? der N(0;1)-Verteilung.- 6 3 Weiterfüihrende Literatur.- 6.4. Namens- und Sachregister.