Eine gleichermaßen aktuelle wie zusammenfassende Darstellung der wichtigsten Methoden zur Untersuchung der klassischen Gruppen fehlte bislang in deutschsprachigen Lehrbüchern. Indem der Autor die klassischen Gruppen sowohl aus algebraisch-geometrischer Sicht, wie auch mit Lieschen (infinitesimalen) Methoden studiert, schließt er diese Lücke. Die von Grund auf behandelte Darstellungstheorie mündet im algebraischen Teil in der Brauer-Weylschen Methode der Zerlegung von Tensorpotenzen durch Youngsche Symmetrieoperatoren in irreduzible Teilräume. Auf der Ebene der Lie-Algebren wird die Klassifikation der irreduziblen Darstellungen durch höchste Gewichte durchgeführt. Besonderer Wert liegt auf einer ausführlichen Erläuterung des Zusammenspiels der Gruppen und ihrer Lie-Algebren, die das Kernstück der Lieschen Theorie ausmachen. In dieser Hinsicht dient das Buch auch als Einführung in die Theorie der Lie-Gruppen; zur Parametrisierung wird dabei ausschließlich die Matrix-Exponentialabbildung verwandt, wodurch ganz auf den aufwendigen Apparat der differenzierbaren Mannigfaltigkeiten verzichtet werden kann. Eine Fülle von Beispielen und Übungsaufgaben dienen zur Vertiefung des Gelernten. Inhaltlich schließt der Text unmittelbar an die Grundvorlesungen über Analysis und Lineare Algebra an.
Inhalt
I. Die klassischen Gruppen.- § 1 Grundlagen der allgemeinen Gruppentheorie.- § 2 Die allgemeine und die spezielle lineare Gruppe.- § 3 Symmetrische Bilinearformen und Hermitesche Formen.- § 4 Orthogonale und unitäre Gruppen.- §5 Symplektische Gruppen.- II. Abgeschlossene Untergruppen von GL(n, K).- § 1 Die Matrix-Exponentialabbildung.- § 2 Lineare Gruppen und ihre Lie-Algebren.- § 3 Homomorphismen linearer Gruppen und ihrer Lie-Algebren.- III. Darstellungen der klassischen Gruppen.- § 1 Grundlagen der allgemeinen Darstellungstheorie von Gruppen.- § 2 Darstellungstheorie der klassischen Gruppen (globale Methode).- IV. Halbeinfache komplexe Lie-Algebren.- § 1 Von der Darstellungstheorie linearer Gruppen zur Darstellungstheorie von Lie-Algebren.- § 2 Halbeinfache Lie-Algebren.- § 3 Darstellungen halbeinfacher Lie-Algebren.- Literatur.- Symbolverzeichnis.- Namenverzeichnis.
Inhalt
I. Die klassischen Gruppen.- § 1 Grundlagen der allgemeinen Gruppentheorie.- § 2 Die allgemeine und die spezielle lineare Gruppe.- § 3 Symmetrische Bilinearformen und Hermitesche Formen.- § 4 Orthogonale und unitäre Gruppen.- §5 Symplektische Gruppen.- II. Abgeschlossene Untergruppen von GL(n, K).- § 1 Die Matrix-Exponentialabbildung.- § 2 Lineare Gruppen und ihre Lie-Algebren.- § 3 Homomorphismen linearer Gruppen und ihrer Lie-Algebren.- III. Darstellungen der klassischen Gruppen.- § 1 Grundlagen der allgemeinen Darstellungstheorie von Gruppen.- § 2 Darstellungstheorie der klassischen Gruppen (globale Methode).- IV. Halbeinfache komplexe Lie-Algebren.- § 1 Von der Darstellungstheorie linearer Gruppen zur Darstellungstheorie von Lie-Algebren.- § 2 Halbeinfache Lie-Algebren.- § 3 Darstellungen halbeinfacher Lie-Algebren.- Literatur.- Symbolverzeichnis.- Namenverzeichnis.
Titel
Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen
Autor
EAN
9783642743405
Format
E-Book (pdf)
Hersteller
Genre
Veröffentlichung
12.03.2013
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
255
Auflage
1990
Lesemotiv
Unerwartete Verzögerung
Ups, ein Fehler ist aufgetreten. Bitte versuchen Sie es später noch einmal.