Allan Clark
Klappentext
Inhalt
Foreword; Introduction
I. Set Theory
1-9. The notation and terminology of set theory
10-16. Mappings
17-19. Equivalence relations
20-25. Properties of natural numbers
II. Group Theory
26-29. Definition of group structure
30-34. Examples of group structure
35-44. Subgroups and cosets
45-52. Conjugacy, normal subgroups, and quotient groups
53-59. The Sylow theorems
60-70. Group homomorphism and isomorphism
71-75. Normal and composition series
76-86. The Symmetric groups
III. Field Theory
87-89. Definition and examples of field structure
90-95. Vector spaces, bases, and dimension
96-97. Extension fields
98-107. Polynomials
108-114. Algebraic extensions
115-121. Constructions with straightedge and compass
IV. Galois Theory
122-126. Automorphisms
127-138. Galois extensions
139-149. Solvability of equations by radicals
V. Ring Theory
150-156. Definition and examples of ring structure
157-168. Ideals
169-175. Unique factorization
VI. Classical Ideal Theory
176-179. Fields of fractions
180-187. Dedekind domains
188-191. Integral extensions
192-198. Algebraic integers
Bibliography; Index