This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry - as differential geometry in general - has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.



Autorentext

Z. Hu, Zhenzhou Univ., China; A.-M. Li, Sichuan Univ./Chinese AoS, China; U. Simon, TU Berlin, Germany; G. Zhao, Sichuan Univ., China.

Titel
Global Affine Differential Geometry of Hypersurfaces
EAN
9783110390902
ISBN
978-3-11-039090-2
Format
E-Book (epub)
Hersteller
Veröffentlichung
17.08.2015
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
21.31 MB
Anzahl Seiten
376
Jahr
2015
Untertitel
Englisch
Auflage
2nd revised and extended edition.