Stochastic Modeling for Medical Image Analysis provides a brief introduction to medical imaging, stochastic modeling, and model-guided image analysis.Today, image-guided computer-assisted diagnostics (CAD) faces two basic challenging problems. The first is the computationally feasible and accurate modeling of images from different modalities to obt
Autorentext
Ayman El-Baz, PhD, associate professor, Department of Bioengineering, University of Louisville, Kentucky, USA
Georgy Gimel'farb, professor of computer science, University of Auckland, New Zealand
Jasjit S. Suri, PhD, MBA, CEO, Global Biomedical Technologies, Inc., Roseville, California, USA
Inhalt
Medical Imaging Modalities. From Images to Graphical Models. IRF Models: Estimating Marginals. Markov-Gibbs Random Field Models: Estimating Signal Interactions. Applications: Image Alignment. Segmenting Multimodal Images. Segmenting with Deformable Models. Segmenting with Shape and Appearance Priors. Cine Cardiac MRI Analysis. Sizing Cardiac Pathologies.