Autorentext
Professor in physics of the Shahid Beheshti University, Babak Shokri was born in 1965 in Tehran, Islamic Republic of Iran. He received his PhD degree from the General Physics Institute of the Russian Academy in Moscow under the supervision of A. A. Rukhadze in 1997. He has been working as a faculty member in the physics department and Laser-Plasma Research Institute of Shahid Beheshti University since 1998. Furthermore he worked as a visiting professor in Alberta University and Manchester University in 2003 and 2007, respectively. He is the author of more than 200 papers in pre-reviewed journals. Furthermore, he won the Khwarizmi International Award in 2006. He was honored two times as the outstanding researcher of Islamic Republic of Iran in 2004 and 2006. The domain of his interest is rather wide and covers theoretical and experimental physics including electrodynamics of dispersion media, laser-plasma interaction, accelerator's physics, PECVD, Plasma MW electronics, plasma engineering and plasma applications in industry and medicine.
Inhalt
Chapter One
Principles of Electrodynamics of Media with Spatial Dispersion
1.1. Equations of Electromagnetic Fields
1.2. Tensor of Complex Dielectric Permittivity
1.3. Dispersion of Dielectric Permittivity
1.4. Energy of the Electromagnetic Fields in a Medium
1.5. Electromagnetic Waves in a Medium
1.6. Plane Monochromatic Waves in a Medium
1.7. Electromagnetic Wave Propagation in a Weakly Spatial Dispersive Medium1.8. Energy Loss of Fast Moving Electrons in the Medium
1.9. Electromagnetic Field Fluctuations
1.9.1. Correlation functions and general analysis
1.9.2. Electromagnetic field fluctuations in homogenous isotropic non-grotropic media1.9.3. Casualty principle and generalization of Kramers-Kronig relations.
1.10. Electromagnetic Properties of Inhomogeneous Plasmas
1.10.1. Inhomogeneous media without spatial dispersion. Approximation of geometrical optics.
1.10.1.1. Field equation for an inhomogeneous medium without spatial dispersion
1.10.1.2. The method of geometrical optics and the WKB method
1.10.1.3. The Bohr-Sommerfeld quasi classical quantization rules
1.10.2. Approximation of geometrical optics for inhomogeneous media with spatial dispersion
1.10.2.1. Eikonal equation for inhomogeneous medium with spatial dispersion
1.10.2.2. Quantization rules
1.11. Problems
Chapter Two
Isotropic Plasma
2.1. Kinetic Equation with Selfconsistent Fields
2.2. Dielectric Permittivity of Collisionless Isotropic Plasma
2.3. Dielectric Permittivity and Electromagnetic Oscillations of Isotropic Collisionless Nonrelativistic Electron Plasma
2.4. Dielectric Permittivity and Electromagnetic Oscillations of Relativistic Collisionless Electron Plasma
2.5. Oscillations of Isotropic ElectronIon Plasma
2.6. Hydrodynamics of Collisionless Plasma
2.7. Dielectric Permittivity of Plasma; Taking account of Particle Collisions
2.8. Boundary Problem of Fields in Plasma
2.9. Reflection and absorption of electromagnetic Waves in Semibounded Plasma
2.10. Linear Electromagnetic Phenomena in Bounded Plasmas
2.10.1. Surface electromagnetic waves in semi-bounded plasmas
2.10.1.1. Solution of the Vlasov equation for the semi-bounded isotropic plasma
2.10.1.2. Solution of field equations
2.10.1.3. Surface impedance
2.10.1.4. Dispersion equation for surface waves
2.10.1.5. Surface waves in cold semi-bounded plasma2.10.1.6. Cherenkov damping of surface waves
2.10.1.7. Surface ion-acoustic waves
2.10.2. Surface waves on plasma layers
2.10.2.1. Potential surface waves on thin layers of non-dispersive media
2.10.2.2. Surface waves on thin layers of dispersive media
2.11. Problems
Chapter Three
Anisotropic Plasma
3.1. Dielectric permittivity of collisionless plasma in a constant magnetic field
3.2. Electromagnetic Oscillations of Nonrelativistic Plasma in a Constant Magnetic Field
3.3. Relativistic Electron Plasma in the Magnetic Field3.4. ElectronIon Plasma in the External Magnetic Field
3.5. Particle Collisions in MagnetoActive Plasma
3.6. Magnetohydrodynamics of Collisionless Plasma
3.7. Interaction of Straight Neutralized Beams of Charged Particles with Plasma
3.7.1. Interaction of a Straight Monoenergetic Electron Beam with Cold Plasma: (Cherenkov Instability)
3.7.2. Effect of Thermal Motion on the Cherenkov Instability
3.7.3. CurrentDriven Instabilities in Plasma: Bunemann Instability
3.7.4. CurrentDriven Instabilities in Plasma: IonAcoustic Instability
3.8. Dielectric Tensor of Weakly Inhomogeneous Magnetized Plasmas in the Approximation of Geometrical Optics
3.8.1. Distribution function for equilibrium inhomogeneous plasma3.8.2. Magnetic confinement of inhomogeneous plasm...