Neural Networks The concepts of neural-network models and techniques of parallel distributed processing are comprehensively presented in a three-step approach: - After a brief overview of the neural structure of the brain and the history of neural-network modeling, the reader is introduced to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers more advanced subjects such as the statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - In the self-contained final part, seven programs that provide practical demonstrations of neural-network models and their learning strategies are discussed. The software is included on a 3 1/2-inch MS-DOS diskette. The source code can be modified using Borland's TURBO-C 2.0 compiler, the Microsoft C compiler (5.0), or compatible compilers.



Klappentext

Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.



Inhalt

1. The Structure of the Central Nervous System.- 2. Neural Networks Introduced.- 3. Associative Memory.- 4. Stochastic Neurons.- 5. Cybernetic Networks.- 6. Multilayered Perceptrons.- 7. Applications.- 8. More Applications of Neural Networks.- 9. Network Architecture and Generalization.- 10. Associative Memory: Advanced Learning Strategies.- 11. Combinatorial Optimization.- 12. VLSI and Neural Networks.- 13. Symmetrical Networks with Hidden Neurons.- 14. Coupled Neural Networks.- 15. Unsupervised Learning.- 16. Evolutionary Algorithms for Learning.- 17. Statistical Physics and Spin Glasses.- 18. The Hopfield Network for p/N' 0.- 19. The Hopfield Network for Finite p/N.- 20. The Space of Interactions in Neural Networks.- 21. Numerical Demonstrations.- 22. ASSO: Associative Memory.- 23. ASSCOUNT: Associative Memory for Time Sequences.- 24. PERBOOL: Learning Boolean Functions with Back-Prop.- 25. PERFUNC: Learning Continuous Functions with Back-Prop.- 26. Solution of the Traveling-Salesman Problem.- 27. KOHOMAP: The Kohonen Self-organizing Map.- 28. btt: Back-Propagation Through Time.- 29. NEUROGEN: Using Genetic Algorithms to Train Networks.- References.

Titel
Neural Networks
Untertitel
An Introduction
EAN
9783642577604
Format
E-Book (pdf)
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
331