The pilot's guide to aeronautics and the complex forces of flight

Flight Theory and Aerodynamics is the essential pilot's guide to the physics of flight, designed specifically for those with limited engineering experience. From the basics of forces and vectors to craft-specific applications, this book explains the mechanics behind the pilot's everyday operational tasks. The discussion focuses on the concepts themselves, using only enough algebra and trigonometry to illustrate key concepts without getting bogged down in complex calculations, and then delves into the specific applications for jets, propeller crafts, and helicopters. This updated third edition includes new chapters on Flight Environment, Aircraft Structures, and UAS-UAV Flight Theory, with updated craft examples, component photos, and diagrams throughout. FAA-aligned questions and regulatory references help reinforce important concepts, and additional worked problems provide clarification on complex topics.

Modern flight control systems are becoming more complex and more varied between aircrafts, making it essential for pilots to understand the aerodynamics of flight before they ever step into a cockpit. This book provides clear explanations and flight-specific examples of the physics every pilot must know.

* Review the basic physics of flight

* Understand the applications to specific types of aircraft

* Learn why takeoff and landing entail special considerations

* Examine the force concepts behind stability and control

As a pilot, your job is to balance the effects of design, weight, load factors, and gravity during flight maneuvers, stalls, high- or low-speed flight, takeoff and landing, and more. As aircraft grow more complex and the controls become more involved, an intuitive grasp of the physics of flight is your most valuable tool for operational safety. Flight Theory and Aerodynamics is the essential resource every pilot needs for a clear understanding of the forces they control.



Autorentext

A former marine, the late CHARLES E. DOLE taught flight safety for twenty-eight years to officers of the U.S. Air Force, Army, and Navy, as well as at the University of Southern California.

The late JAMES E. LEWIS was an associate professor of Aeronautical Science at Embry Riddle Aeronautical University in Florida, former aeronautical engineer for the Columbus Aircraft Division of Rockwell International, and retired Ohio National Guard military pilot.

JOSEPH R. BADICK has over forty years of flight experience in single, multi-engine, land /seaplane aircraft. Rated in commercial rotor-craft and gliders, with the highest rating of (A.T.P.) Airline Transport Pilot. A licensed airframe and powerplant mechanic, with inspection authorization (I.A.), he has installed numerous aircraft aerodynamic performance (S.T.C's) Supplemental Type Certificates, with test flight checks. He holds a Ph.D. (ABD) in Business from Northcentral University of Arizona and a Master's degree in Aeronautical Science. He was a Naval Officer for 30 years as an Aeronautical Engineer Duty Officer (AEDO), involved in all aspects of aircraft maintenance, logistics, acquisition, and test/evaluation. Currently he is a professor of aviation at a community college in the Career Pilot/Aviation Management degree programs.

BRIAN A. JOHNSON is a former airline and corporate pilot who holds a multi-engine Airline Transport Pilot certificate, in addition to Commercial pilot single-engine land/sea privileges. He is an active instrument and multi-engine Gold Seal flight instructor with an advanced ground instructor rating. He holds a Master's degree in Aeronautical Science from Embry-Riddle Aeronautical University and currently serves in a faculty position for a two-year Career Pilot/Aviation Management degree program, in addition to serving as an adjunct faculty member in the Aeronautical Science department of a major aeronautical university.



Zusammenfassung
The pilot's guide to aeronautics and the complex forces of flight

Flight Theory and Aerodynamics is the essential pilot's guide to the physics of flight, designed specifically for those with limited engineering experience. From the basics of forces and vectors to craft-specific applications, this book explains the mechanics behind the pilot's everyday operational tasks. The discussion focuses on the concepts themselves, using only enough algebra and trigonometry to illustrate key concepts without getting bogged down in complex calculations, and then delves into the specific applications for jets, propeller crafts, and helicopters. This updated third edition includes new chapters on Flight Environment, Aircraft Structures, and UAS-UAV Flight Theory, with updated craft examples, component photos, and diagrams throughout. FAA-aligned questions and regulatory references help reinforce important concepts, and additional worked problems provide clarification on complex topics.

Modern flight control systems are becoming more complex and more varied between aircrafts, making it essential for pilots to understand the aerodynamics of flight before they ever step into a cockpit. This book provides clear explanations and flight-specific examples of the physics every pilot must know.

  • Review the basic physics of flight
  • Understand the applications to specific types of aircraft
  • Learn why takeoff and landing entail special considerations
  • Examine the force concepts behind stability and control

As a pilot, your job is to balance the effects of design, weight, load factors, and gravity during flight maneuvers, stalls, high- or low-speed flight, takeoff and landing, and more. As aircraft grow more complex and the controls become more involved, an intuitive grasp of the physics of flight is your most valuable tool for operational safety. Flight Theory and Aerodynamics is the essential resource every pilot needs for a clear understanding of the forces they control.

Inhalt
Preface xi

About the Authors xiii

1 Introduction 1

The Flight Environment, 1

Basic Quantities, 1

Forces, 2

Mass, 3

Scalar and Vector Quantities, 4

Moments, 5

Equilibrium Conditions, 6

Newton's Laws of Motion, 6

Linear Motion, 7

Rotational Motion, 8

Work, 8

Energy, 8

Power, 9

Friction, 9

Symbols, 10

Equations, 11

Problems, 12

2 Atmosphere, Altitude, and Airspeed Measurement 13

Properties of the Atmosphere, 13

ICAO Standard Atmosphere, 15

Altitude Measurement, 16

Continuity Equation, 19

Bernoulli's Equation, 19

Airspeed Measurement, 22

Symbols, 26

Equations, 27

Problems, 27

3 Structures, Airfoils, and Aerodynamic Forces 31

Aircraft Structures, 31

Airfoils, 37

Development of Forces on Airfoils, 42

Aerodynamic Force, 44

Aerodynamic Pitching Moments, 45

Aerodynamic Center, 46

Symbols, 46

Problems, 47

4 Lift 49

Introduction to Lift, 49

Angle of Attack Indicator, 49

Boundary Layer Theory, 51

Reynolds Number, 53

Adverse Pressure Gradient, 54

Airflow Separation, 55

Stall, 56

Aerodynamic Force Equations, 57

Lift Equation, 58

Airfoil Lift Characteristics, 60

High Coefficient of Lift Devices, 61

Lift During Flight Manuevers, 65

Symbols, 67

Equations, 67

Problems, 68

5 Drag 71

Drag Equation, 71

Induced Drag, 71

Ground Effect, 77

Laminar Flow Airfoils, 81

Parasite Drag, 82

Total Drag, 85

Lift to Drag Ratio, 87

Drag Reduction, 88

Symbols, 90

Equations, 91

Titel
Flight Theory and Aerodynamics
Untertitel
A Practical Guide for Operational Safety
EAN
9781119233428
ISBN
978-1-119-23342-8
Format
E-Book (pdf)
Genre
Veröffentlichung
07.11.2016
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
18.01 MB
Anzahl Seiten
384
Jahr
2016
Untertitel
Englisch
Auflage
3. Aufl.