Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematical physics for at least two centuries. This book examines the differential-geometric constructions (Nahm) as well as the algebro-geometric approach (Fourier--Mukai functors). Also included is a considerable amount of material scattered in the literature and not systematically organized in any existing textbook or monograph. The book provides an introduction to current research in mathematical physics and is particularly useful to graduate students or researchers just entering this field.



Inhalt
Integral functors.- Fourier-Mukai functors.- Fourier-Mukai on Abelian varieties.- Fourier-Mukai on K3 surfaces.- Nahm transforms.- Relative Fourier-Mukai functors.- Fourier-Mukai partners and birational geometry.- Derived and triangulated categories.- Lattices.- Miscellaneous results.- Stability conditions for derived categories.
Titel
Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics
EAN
9780817646639
ISBN
978-0-8176-4663-9
Format
E-Book (pdf)
Herausgeber
Veröffentlichung
12.06.2009
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
3.66 MB
Anzahl Seiten
418
Jahr
2009
Untertitel
Englisch