Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects. - Winner of a 2018 Textbook Excellence Award (College) (Texty) from the Textbook and Academic Authors Association - Features a quantitative approach that includes physical and chemical principles - Provides a more integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology - Includes clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) - Integrates labs and problem sets to provide opportunities for practice and assessment throughout the course NEW FOR THE SECOND EDITION - Expansion of many sections to include relevant information - Addition of many new figures and re-drawing of other figures to update understanding and clarify difficult areas - Substantial updating of the text to reflect newer research results - Addition of several new appendices including statistics, nomenclature of transport carriers, and structural biology of important items such as the neuromuscular junction and calcium release unit - Addition of new problems within the problem sets - Addition of commentary to power point presentations



Autorentext

Dr. Feher is Professor Emeritus of Physiology and Biophysics at Virginia Commonwealth University. He received his Ph.D. from Cornell University, and has research interests in the quantitative understanding of the mechanisms of calcium uptake and release by the cardiac sarcoplasmic reticulum, in the mechanisms of calcium transport across the intestine, and in muscle contraction and relaxation. Dr. Feher developed a course in Introductory Quantitative Physiology at VCU and has been course coordinator for more than a decade. He also teaches muscle and cell physiology to medical and graduate students and is course coordinator for the Graduate Physiology survey course in physiology given at VCU's School of Medicine.



Klappentext

Quantitative Human Physiology: An Introduction, winner of a 2018 Textbook Excellence Award (Texty), is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects.

  • Winner of a 2018 Textbook Excellence Award (College) (Texty) from the Textbook and Academic Authors Association
  • Features a quantitative approach that includes physical and chemical principles
  • Provides a more integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology
  • Includes clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.)
  • Integrates labs and problem sets to provide opportunities for practice and assessment throughout the course

NEW FOR THE SECOND EDITION

  • Expansion of many sections to include relevant information
  • Addition of many new figures and re-drawing of other figures to update understanding and clarify difficult areas
  • Substantial updating of the text to reflect newer research results
  • Addition of several new appendices including statistics, nomenclature of transport carriers, and structural biology of important items such as the neuromuscular junction and calcium release unit
  • Addition of new problems within the problem sets
  • Addition of commentary to power point presentations



Inhalt

Unit 1: Physical and Chemical Foundations of Physiology

1.1. The Core Principles of Physiology

1.2. Physical Foundations of Physiology I: Pressure-Driven Flow

1.3. Physical Foundations of Physiology II: Electrical Force, Potential, Capacitance, and Current

Problem Set 1.1. Physical Foundations: Pressure and Electrical Forces and Flows

1.4. Chemical Foundations of Physiology I: Chemical Energy and Intermolecular Forces

1.5. Chemical Foundations of Physiology II: Concentration and Kinetics

1.6. Diffusion

1.7. Electrochemical Potential and Free Energy

Problem Set 1.2. Kinetics and Diffusion

Unit 2: Membranes, Transport, and Metabolism

2.1. Cell Structure

2.2. DNA and Protein Synthesis

2.3. Protein Structure

2.4. Biological Membranes

Problem Set 2.1. Surface Tension, Membrane Surface Tension, Membrane Structure, Microscopic Resolution, and Cell Fractionation

2.5. Passive Transport and Facilitated Diffusion

2.6. Active Transport: Pumps and Exchangers

2.7. Osmosis and Osmotic Pressure

Problem Set 2.2. Membrane Transport

2.8. Cell Signaling

2.9. ATP Production I: Glycolysis

2.10. ATP Production II: The TCA Cycle and Oxidative Phosphorylation

2.11. ATP Production III: Fatty Acid Oxidation and Amino Acid Oxidation

Unit 3: Physiology of Excitable Cells

3.1. The Origin of the Resting Membrane Potential

3.2. The Action Potential

3.3. Propagation of the Action Potential

Problem Set 3.1. Membrane Potential, Action Potential, and Nerve Conduction

3.4. Skeletal Muscle Mechanics

3.5. Contractile Mechanisms in Skeletal Muscle

3.6. The Neuromuscular Junction and Excitation-Contraction Coupling

3.7. Muscle Energetics, Fatigue, and Training

Problem Set 3.2. Neuromuscular Transmission, Muscle Force, and Energetics

3.8. Smooth Muscle

Unit 4: The Nervous System

4.1. Organization of the Nervous System

4.2. Cells, Synapses, and Neurotransmitters

4.3. Cutaneous Sensory Systems

4.4. Spinal Reflexes

4.5. Balance and Control of Movement

Problem Set 4.1. Nerve Conduction

4.6. The Chemical Senses

4.7. Hearing

4.8. Vision

4.2 Problem Set. Sensory Transduction

4.9. Autonomic Nervous System

Unit 5: The Cardiovascular System

5.1. Overview of the Cardiovascular System and the Blood

5.2. Plasma and Red Blood Cells

5.3. White Blood Cells and Inflammation

5.4. The Heart as a Pump

Problem Set 5.1. Blood

5.5. The Cardiac Action Potential

5.6. The Electrocardiogram

5.7. The Cellular Basis of Cardiac Contractility

5.8. The Cardiac Function Curve

Problem Set 5.2. Cardiac Work

5.9. Vascular Function: Hemodynamics

5.10. The Microcirculation and Solute Exchange

5.11. Regulation of Perfusion

5.12. Integration of Cardiac Output and Venous Return

5.13. Regulation of Arterial Pressure

Problem Set 5.3. Hemodynamics and Microcirculation

Unit 6: Respiratory Physiology

6.1. The Mechanics of Breathing

6.2. Lung Volumes and Airway Resistance

6.3. Gas Exchange in the Lungs

Problem Set 6.1. Airway Resistance and Alveolar Gas Exchange

6.4. Oxygen and Carbon Dioxide Transport

6.5. Acid-Base Physiology I: The Bicarbonate Buffer System and Respiratory Compensation

6.6. Control of Ventilation

Problem Set 6.2. Gas Transport and pH…

Titel
Quantitative Human Physiology
Untertitel
An Introduction
EAN
9780128011546
Format
E-Book (epub)
Veröffentlichung
02.01.2017
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
68.62 MB
Anzahl Seiten
1008