OpenGL ® ES (TM) is the industry's leading software interface and graphics library for rendering sophisticated 3D graphics on handheld and embedded devices. The newest version, OpenGL ES 3.0, makes it possible to create stunning visuals for new games and apps, without compromising device performance or battery life.
In the OpenGL® ES(TM) 3.0 Programming Guide, Second Edition, the authors cover the entire API and Shading Language. They carefully introduce OpenGL ES 3.0 features such as shadow mapping, instancing, multiple render targets, uniform buffer objects, texture compression, program binaries, and transform feedback.
Through detailed, downloadable C-based code examples, you'll learn how to set up and program every aspect of the graphics pipeline. Step by step, you'll move from introductory techniques all the way to advanced per-pixel lighting and particle systems. Throughout, you'll find cutting-edge tips for optimizing performance, maximizing efficiency with both the API and hardware, and fully leveraging OpenGL ES 3.0 in a wide spectrum of applications.
All code has been built and tested on iOS 7, Android 4.3, Windows (OpenGL ES 3.0 Emulation), and Ubuntu Linux, and the authors demonstrate how to build OpenGL ES code for each platform.
Coverage includes
- EGL API: communicating with the native windowing system, choosing configurations, and creating rendering contexts and surfaces
- Shaders: creating and attaching shader objects; compiling shaders; checking for compile errors; creating, linking, and querying program objects; and using source shaders and program binaries
- OpenGL ES Shading Language: variables, types, constructors, structures, arrays, attributes, uniform blocks, I/O variables, precision qualifiers, and invariance
- Geometry, vertices, and primitives: inputting geometry into the pipeline, and assembling it into primitives
- 2D/3D, Cubemap, Array texturing: creation, loading, and rendering; texture wrap modes, filtering, and formats; compressed textures, sampler objects, immutable textures, pixel unpack buffer objects, and mipmapping
- Fragment shaders: multitexturing, fog, alpha test, and user clip planes
- Fragment operations: scissor, stencil, and depth tests; multisampling, blending, and dithering
- Framebuffer objects: rendering to offscreen surfaces for advanced effects
- Advanced rendering: per-pixel lighting, environment mapping, particle systems, image post-processing, procedural textures, shadow mapping, terrain, and projective texturing
- Sync objects and fences: synchronizing within host application and GPU execution
This edition of the book includes a color insert of the OpenGL ES 3.0 API and OpenGL ES Shading Language 3.0 Reference Cards created by Khronos. The reference cards contain a complete list of all of the functions in OpenGL ES 3.0 along with all of the types, operators, qualifiers, built-ins, and functions in the OpenGL ES Shading Language.
Autorentext
Dan Ginsburg is founder of Upsample Software, LLC, a software consultancy specializing in 3D graphics and GPU computing. In previous roles he has worked on developing OpenGL drivers, desktop and handheld 3D demos, GPU developer tools, 3D medical visualization and games. He coauthored the OpenCL Programming Guide (Addison-Wesley, 2012).
Budi Purnomo is a senior software architect at Advanced Micro Devices, Inc. where he collaborates with many AMD architects to develop software infrastructure across multiple software stacks and to define future hardware architectures for debugging and profiling GPU applications.
Dave Shreiner is one of the World's foremost authorities on OpenGL. He is the series editor for the Addison-Wesley OpenGL Series.
Aatab Munshi is the spec editor for the OpenGL ES 1.1 and 2.0 specifications.
Inhalt
List of Figures xvii
List of Examples xxi
List of Tables xxv
Foreword xxix
Preface xxxi
Intended Audience xxxi
Organization of This Book xxxii
Example Code and Shaders xxxvi
Errata xxxvi
Acknowledgments xxxvii
About the Authors xxxix
Chapter 1: Introduction to OpenGL ES 3.0 1
OpenGL ES 3.0 3
What's New in OpenGL ES 3.0 11
OpenGL ES 3.0 and Backward Compatibility 17
EGL 19
EGL Command Syntax 20
OpenGL ES Command Syntax 21
Error Handling 22
Basic State Management 23
Further Reading 25
Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example 27
Code Framework 28
Where to Download the Examples 28
Hello Triangle Example 29
Using the OpenGL ES 3.0 Framework 34
Creating a Simple Vertex and Fragment Shader 35
Compiling and Loading the Shaders 36
Creating a Program Object and Linking the Shaders 38
Setting the Viewport and Clearing the Color Buffer 39
Loading the Geometry and Drawing a Primitive 40
Displaying the Back Buffer 41
Summary 42
Chapter 3: An Introduction to EGL 43
Communicating with the Windowing System 44
Checking for Errors 45
Initializing EGL 46
Determining the Available Surface Configurations 46
Querying EGLConfig Attributes 48
Letting EGL Choose the Configuration 51
Creating an On-Screen Rendering Area: The EGL Window 53
Creating an Off-Screen Rendering Area: EGL Pbuffers 56
Creating a Rendering Context 60
Making an EGLContext Current 62
Putting All Our EGL Knowledge Together 63
Synchronizing Rendering 66
Summary 67
Chapter 4: Shaders and Programs 69
Shaders and Programs 69
Uniforms and Attributes 80
Shader Compiler 93
Program Binaries 94
Summary 95
Chapter 5: OpenGL ES Shading Language 97
OpenGL ES Shading Language Basics 98
Shader Version Specification 98
Variables and Variable Types 99
Variable Constructors 100
Vector and Matrix Components 101
Constants 102
Structures 103
Arrays 104
Operators 104
Functions 106
Built-In Functions 107
Control Flow Statements 107
Uniforms 108
Uniform Blocks 109
Vertex and Fragment Shader Inputs/Outputs 111
Interpolation Qualifiers 114
Preprocessor and Directives 115
Uniform and Interpolator Packing 117
Precision Qualifiers 119
Invariance 121
Summary 123
Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects 125
Specifying Vertex Attribute Data 126
Declaring Vertex Attribute Variables in a Vertex Shader 135
Vertex Buffer Objects 140
Vertex Array Objects 150
Mapping Buffer Objects 154
Copying Buffer Objects 159
Summary 160
Chapter 7: Primitive Assembly and Rasterization 161
Primitives 161
Drawing Primitives 165
Primitive Assembly 174
Rasterization 179
Occlusion Queries 183
Summary 185
Chapter 8: Vertex Shaders 187
Vertex Shader Overview 188
Vertex Shader Examples 196
Generating Texture Coordinates 205
Vertex Skinning 207
Transform Feedback 211
Vertex Textures 214
OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader 215
Summary 223
Chapter 9: Texturing 225
Texturing Basics 226
Compressed Textures 262
Texture Subimage Specification 266
Copying Texture Data from the Color Buffer 269
Sampler…