Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis of new signals.

This book treats the mathematical tools, the models themselves, and the computational algorithms for applying statistics to analyze six representative classes of signals of increasing complexity. The book covers patterns in text, sound, and images. Discussions of images include recognizing characters, textures, nature scenes, and human faces. The text includes onlineaccess to thematerials (data, code, etc.) needed for the exercises.



Autorentext

David Mumford is a professor emeritus of applied mathematics at Brown University. His contributions to mathematics fundamentally changed algebraic geometry, including his development of geometric invariant theory and his study of the moduli space of curves. In addition, Dr. Mumford's work in computer vision and pattern theory introduced new mathematical tools and models from analysis and differential geometry. He has been the recipient of many prestigious awards, including U.S. National Medal of Science (2010), the Wolf Foundation Prize in Mathematics (2008), the Steele Prize for Mathematical Exposition (2007), the Shaw Prize in Mathematical Sciences (2006), a MacArthur Foundation Fellowship (1987-1992), and the Fields Medal (1974).

Agnes Desolneux is a researcher at CNRS/Universite Paris Descartes. A former student of David Mumford's, she earned her Ph.D. in applied mathematics from CMLA, ENS Cachan. Dr. Desolneux's research interests include statistical image analysis, Gestalt theory, mathematical modeling of visual perception, and medical imaging.

Titel
Pattern Theory
Untertitel
The Stochastic Analysis of Real-World Signals
EAN
9781040060025
Format
E-Book (epub)
Veröffentlichung
09.08.2010
Digitaler Kopierschutz
Adobe-DRM
Anzahl Seiten
375