This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering. As a unique feature, this powerful tool for tackling time-dependent partial differential equations is subsequently applied to many equations. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach.
Autorentext
Des McGhee is Honorary Lecturer at the University of Strathclyde in Glasgow, Scotland.
Rainer Picard is Seniorprofessor at the TU Dresden in Germany.
Sascha Trostorff is lecturer at the Christian-Albrechts-Universität zu Kiel in Germany.
Marcus Waurick Chancellor's Fellow at the University of Strathclyde in Glasgow, Scotland.
Inhalt
Introduction.- The Solution Theory for a Basic Class of Evolutionary Equations.- Some Applications to Models from Physics and Engineering.- But what about the Main Stream?.- Two Supplements for the Toolbox.- Requisites from Functional Analysis.