The book provides a complete presentation of complex analysis, starting with the theory of Riemann surfaces, including uniformization theory and a detailed treatment of the theory of compact Riemann surfaces, the Riemann-Roch theorem, Abel's theorem and Jacobi's inversion theorem. This motivates a short introduction into the theory of several complex variables, followed by the theory of Abelian functions up to the theta theorem. The last part of the book provides an introduction into the theory of higher modular functions.
Autorentext
Prof. Dr. Eberhard Freitag, Universität Heidelberg, Mathematisches Institut
Klappentext
The book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the ¯rst volume. There is no comparable treatment in the literature.
Inhalt
Chapter I. Riemann Surfaces.- Chapter II. Harmonic Functions on Riemann Surfaces.- Chapter III. Uniformization.- Chapter IV. Compact Riemann Surfaces.- Appendices to Chapter IV.- Chapter V. Analytic Functions of Several Complex Variables.- Chapter V. Analytic Functions of Several Complex Variable.- Chapter VI. Abelian Functions.- Chapter VII. Modular Forms of Several Variables.- Chapter VIII. Appendix: Algebraic Tools.- References.- Index.