The book provides a complete presentation of complex analysis, starting with the theory of Riemann surfaces, including uniformization theory and a detailed treatment of the theory of compact Riemann surfaces, the Riemann-Roch theorem, Abel's theorem and Jacobi's inversion theorem. This motivates a short introduction into the theory of several complex variables, followed by the theory of Abelian functions up to the theta theorem. The last part of the book provides an introduction into the theory of higher modular functions.



Autorentext

Prof. Dr. Eberhard Freitag, Universität Heidelberg, Mathematisches Institut



Klappentext

The book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the ¯rst volume. There is no comparable treatment in the literature.



Inhalt

Chapter I. Riemann Surfaces.- Chapter II. Harmonic Functions on Riemann Surfaces.- Chapter III. Uniformization.- Chapter IV. Compact Riemann Surfaces.- Appendices to Chapter IV.- Chapter V. Analytic Functions of Several Complex Variables.- Chapter V. Analytic Functions of Several Complex Variable.- Chapter VI. Abelian Functions.- Chapter VII. Modular Forms of Several Variables.- Chapter VIII. Appendix: Algebraic Tools.- References.- Index.

Titel
Complex Analysis 2
Untertitel
Riemann Surfaces, Several Complex Variables, Abelian Functions, Higher Modular Functions
EAN
9783642205545
ISBN
978-3-642-20554-5
Format
E-Book (pdf)
Veröffentlichung
10.06.2011
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
2.47 MB
Anzahl Seiten
506
Jahr
2015
Untertitel
Englisch