Autorentext

Eugene F. Krause



Klappentext

This entertaining, stimulating textbook offers anyone familiar with Euclidean geometry ? undergraduate math students, advanced high school students, and puzzle fans of any age ? an opportunity to explore taxicab geometry, a simple, non-Euclidean system that helps put Euclidean geometry in sharper perspective.
In taxicab geometry, the shortest distance between two points is not a straight line. Distance is not measured as the crow flies, but as a taxicab travels the "grid" of the city street, from block to block, vertically and horizontally, until the destination is reached. Because of this non-Euclidean method of measuring distance, some familiar geometric figures are transmitted: for example, circles become squares.
However, taxicab geometry has important practical applications. As Professor Krause points out, "While Euclidean geometry appears to be a good model of the 'natural' world, taxicab geometry is a better model of the artificial urban world that man has built."
As a result, the book is replete with practical applications of this non-Euclidean system to urban geometry and urban planning ? from deciding the optimum location for a factory or a phone booth, to determining the most efficient routes for a mass transit system.
The underlying emphasis throughout this unique, challenging textbook is on how mathematicians think, and how they apply an apparently theoretical system to the solution of real-world problems.



Inhalt

1 what is taxicab geometry?
2 some applications
3 some geometric figures
4 distance from a point to a line
5 triangles
6 further applications to urban geography
7 some directions for further research
appendix
taxicab geometry and euclidean geometry compared
selected answers
index

Titel
Taxicab Geometry
Untertitel
An Adventure in Non-Euclidean Geometry
EAN
0800759136063
ISBN
978-0-486-13606-6
Format
E-Book (epub)
Veröffentlichung
30.04.2012
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
4.76 MB
Anzahl Seiten
96
Jahr
2012
Untertitel
Englisch