In the last decade unsupervised pattern discovery in time series, i.e. the problem of finding recurrent similar subsequences in long multivariate time series without the need of querying subsequences, has earned more and more attention in research and industry. Pattern discovery was already successfully applied to various areas like seismology, medicine, robotics or music. Until now an application to automotive time series has not been investigated. This dissertation fills this desideratum by studying the special characteristics of vehicle sensor logs and proposing an appropriate approach for pattern discovery. To prove the benefit of pattern discovery methods in automotive applications, the algorithm is applied to construct representative driving cycles.

About the author

Fabian Kai Dietrich Noering is currently working in the technical development of Volkswagen AG as data scientist with a special interest in theanalysis of time series regarding e.g. product optimization.



Autorentext
Fabian Kai Dietrich Noering is currently working in the technical development of Volkswagen AG as data scientist with a special interest in the analysis of time series regarding e.g. product optimization.

Inhalt
Introduction.- RelatedWork.- Development of Pattern Discovery Algorithms for Automotive Time Series.- Pattern-based Representative Cycles.- Evaluation.- Conclusion.
Titel
Unsupervised Pattern Discovery in Automotive Time Series
Untertitel
Pattern-based Construction of Representative Driving Cycles
EAN
9783658363369
Format
E-Book (pdf)
Veröffentlichung
23.03.2022
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
5.41 MB
Anzahl Seiten
148