This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.



Inhalt

1 Introduction.- 2 Unramified sheaves and strongly A1-invariant sheaves.- 3 Unramified Milnor-Witt K-theories.- 4 Geometric versus canonical transfers.- 5 The Rost-Schmid complex of a strongly A1-invariant sheaf.- 6 A1-homotopy sheaves and A1-homology sheaves.- 7 A1-coverings.- 8 A1-homotopy and algebraic vector bundles.- 9 The affine B.G. property for the linear groups and the Grassmanian

Titel
A1-Algebraic Topology over a Field
EAN
9783642295140
Format
E-Book (pdf)
Veröffentlichung
13.07.2012
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
2.65 MB
Anzahl Seiten
259