This thesis presents the first isotope-shift measurement of bound-electron g-factors of highly charged ions and determines the most precise value of the electron mass in atomic mass units, which exceeds the value in the literature by a factor of 13. As the lightest fundamental massive particle, the electron is one of nature's few central building blocks. A precise knowledge of its intrinsic properties, such as its mass, is mandatory for the most accurate tests in physics - the Quantum Electrodynamics tests that describe one of the four established fundamental interactions in the universe. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion studied in a Penning trap with very accurate calculations of the so-called bound-electron g-factor. Here, the g-factors of the valence electrons of two lithium-like calcium isotopes have been measured with relative uncertainties of a few 10^{-10}, constituting an as yet unrivaled level of precision for lithium-like ions. These calcium isotopes provide a unique system across the entire nuclear chart to test the pure relativistic nuclear recoil effect.
Autorentext
2005-2011: Study of physics in Göttingen with stopovers at CERN and the University Claude Bernard Lyon 1. 2011: Diploma in high-energy physics, title: "Performance Study of a Diamond Pixel Detector Prototype for Future ATLAS Upgrades."
2011: Scientist at the Max Planck Institute for Dynamics and Self-Organization, topic: Installation of an experimental setup for the analysis of high turbulences.
2011-2015: PhD student at the GSI Helmholtz Centre for Heavy Ion Research. Since 2015 postdoc at the Max Planck Institute for Nuclear Physics, topic: Installation of a new experimental setup for the most precise determination of the atomic proton and neutron mass.
Inhalt
Introduction.- The g-Factor - Exploring Atomic Structure and Fundamental Constants.- Penning Trap Physics.- Towards the Measurement of the Larmor-to-cyclotron Frequency Ratio.- Determination of the Atomic Mass of the Electron.- Outlook - A New Generation of High-Precision Penning Trap.
Titel
The Electron Mass and Calcium Isotope Shifts
Untertitel
High-Precision Measurements of Bound-Electron g-Factors of Highly Charged Ions
Autor
EAN
9783319508771
ISBN
978-3-319-50877-1
Format
E-Book (pdf)
Hersteller
Herausgeber
Veröffentlichung
03.01.2017
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
7.53 MB
Anzahl Seiten
168
Jahr
2017
Untertitel
Englisch
Unerwartete Verzögerung
Ups, ein Fehler ist aufgetreten. Bitte versuchen Sie es später noch einmal.