This book is a comprehensive yet concise overview of quantum information science, which is a rapidly developing area of interdisciplinary investigation that now plays a significant role in physics, information technology and engineering. It is a handy reference for practitioners and students covering quantum mechanics, quantum key distribution, quantum computation and quantum communication, as well as explicating foundational issues of these topics. Specific protocols for quantum coding, quantum teleportation, quantum key distribution, quantum data compression and entanglement purification are discussed, as are quantum algorithms, including the Deutsch-Jozsa, Shor and Grover algorithms. Appendices on the mathematics of quantum information science and postulates of quantum mechanics are included. The book contains more than 25 illustrations that encapsulate essential ideas and fundamental constructs of quantum information science. The bibliography contains more than 400 articles from the literature of quantum mechanics and information science. Foreword by Prof. Tommaso Toffoli.
Autorentext
Dr. Jaeger is a professor at Boston University, where he earned his Ph.D. in Physics with Abner Shimony in 1995. He has written over 25 journal articles, holds 2 US patents in quantum computing and has authored 2 book chapters. He has been a participant in then DARPA Quantum Network Testbed Project since 2001. Dr. Jaeger is a member of the Quantum Imaging Lab.
Klappentext
This book gives an overview for practitioners and students of quantum physics and information science. It provides ready access to essential information on quantum information processing and communication, such as definitions, protocols and algorithms. Quantum information science is rarely found in clear and concise form. This book brings together this information from its various sources. It allows researchers and students in a range of areas including physics, photonics, solid-state electronics, nuclear magnetic resonance and information technology, in their applied and theoretical branches, to have this vital material directly at hand.
Inhalt
Foreword.- Section 1 Qubits: Quantum state purity.- The representation of qubits.- Stokes parameters.- Single-qubit gates.- The double-slit experiment.- The Mach-Zehnder interferometer.- Multiple qubits.- Section 2 Measurements and quantum operations: The von Neumann classification of processes.- The Pauli classification of measurements.- Maximal measurements and expectation values.- The Lueders rule and non-selective measurements.- Reduced statistical operators.- General operations.- Positive operator valued measures.- Section 3 Quantum non-locality and interferometry: Hidden variables and state completeness.- Von Neumann's 'no-go' theorem.- The Einstein-Podolsky-Rosen argument.- Gleason's theorem.- Bell inequalities.- Interferometric complementarity.- The Franson interferometer.- Two-qubit quantum gates.- Section 4 Classical information and communication: Communication channels.- Shannon entropy.- Renyi entropy.- Coding.- Error correction.- Data compression.- Communication complexity.- Section 5 Quantum information: Quantum entropy.- Quantum relative and conditional entropies.- Quantum mutual information.- Coherent information.- Quantum Renyi and Tsallis entropies.- Section 6 Quantum entanglement: Basic definitions.- The Schmidt decomposition.- Special bases and decompositions.- Stokes parameters and entanglement.- Partial transpose and reduction criteria.- The 'fundamental postulate'.- Entanglement monotones.- Distillation and bound entanglement.- Entanglement and majorization.- Concurrence.- Entanglement witnesses.- Entanglement as a resource.- The thermodynamic analogy.- Information and the foundations of physics.- The geometry of entanglement.- Creating entangled states of light.- Section 7 Entangled multipartite systems.- Stokes and correlation tensors.- N-tangle.- Generalized Schmidt decomposition.- Lorentz-group isometries.- Entanglement classes.- Algebraic invariants of multipartite systems.- Three-qubit states and residual tangle.- Three-qubit quantum logic gates.- States of higher qubit number.- Section 8 Quantum state and process estimation.- Quantum state tomography.- Quantum process tomography.- Direct estimation methods.- Section 9 Quantum communication: Quantum channels.- Channel capacities.- Holevo's theorem.- Discrimination of quantum states.- The no-cloning theorem.- Basic quantum channels.- The GHJW theorem.- Quantum dense coding.- Quantum teleportation.- Entanglement swapping.- Entanglement purification.- Quantum data compression.- Quantum communication complexity.- Section 10 Quantum decoherence and its mitigation: Quantum decoherence.- Decoherence and mixtures.- Decoherence-free subspaces.- Quantum coding, error detection and correction.- The 9-qubit Shor code.- Stabilizer codes.- Concatenation of quantum codes.- Section 11 Quantum broadcasting, copying and deleting: Quantum broadcasting.- Quantum copying.- Quantum deleting.- Landauer's principle.- Section 12 Quantum key distribution: Cryptography.- QKD systems.- The BB84 (four-state) protocol.- The E91 (Ekert) protocol.- The B92 (two-state) protocol.- The 6-state protocol.- Eavesdropping.- Security proofs.- Section 13 Classical and quantum computing: Classical computing.- Deterministic Turing machines.- Probabilistic Turing machines.- Multi-tape Turing machines . 13.5 Quantum Turing machines.- Quantum computational complexity.- Fault-tolerant quantum computing.- The KLM proposal.- Section 14 Quantum algorithms: The Deutsch-Jozsa algorithm.- The Grover search algorithm.- The Shor factoring algorithm.- The Simon algorithm.- Appendix A Mathematical elements: Boolean algebra and Galois fields.- Random variables.- Hilbert space.- The standard quantum formalism.- Dirac notation.- Groups o