Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniqu



Autorentext

Haiping Lu, Konstantinos N. Plataniotis, Anastasios Venetsanopoulos



Inhalt

Introduction. Fundamentals and Foundations: Linear Subspace Learning for Dimensionality Reduction. Fundamentals of Multilinear Subspace Learning. Overview of Multilinear Subspace Learning. Algorithmic and Computational Aspects. Algorithms and Applications: Multilinear Principal Component Analysis. Multilinear Discriminant Analysis. Multilinear ICA, CCA, and PLS. Applications of Multilinear Subspace Learning. Appendices. Bibliography. Index.

Titel
Multilinear Subspace Learning
Untertitel
Dimensionality Reduction of Multidimensional Data
EAN
9781439857298
ISBN
978-1-4398-5729-8
Format
E-Book (pdf)
Herausgeber
Veröffentlichung
11.12.2013
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
7.86 MB
Anzahl Seiten
296
Jahr
2013
Untertitel
Englisch