Pinch Analysis for Energy and Carbon Footprint Reduction is the only dedicated pinch analysis and process integration guide, covering a breadth of material from foundational knowledge to in-depth processes. Readers are introduced to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature, and the golden rules of pinch-based design to meet energy targets. More advanced topics include the extraction of stream data necessary for a pinch analysis, the design of heat exchanger networks, hot and cold utility systems, combined heat and power (CHP), refrigeration, batch- and time-dependent situations, and optimization of system operating conditions, including distillation, evaporation, and solids drying. This new edition offers tips and techniques for practical applications, supported by several detailed case studies. Examples stem from a wide range of industries, including buildings and other non-process situations. This reference is a must-have guide for chemical process engineers, food and biochemical engineers, plant engineers, and professionals concerned with energy optimization, including building designers. - Covers practical analysis of both new and existing processes - Teaches readers to extract the stream data necessary for a pinch analysis and describes the targeting process in depth; includes a downloadable spreadsheet to calculate energy targets - Demonstrates how to achieve the targets by heat recovery, utility system design, and process change - Updated to include carbon footprint, water and hydrogen pinch, developments in industrial applications and software, site data reconciliation, additional case studies, and answers to selected exercises



Autorentext

Ian Kemp has over 30 years of experience in pinch analysis and process energy reduction, including consultancy, R&D, and technical writing. He was a principal technologist at AEA Technology, Harwell, and a scientific leader at GSK. He received the IChemE Junior Moulton Medal in 1989 for his paper on Batch Process Integration and the IChemE Brennan Medal in 2007 for the second edition of this book. His specialties include solids processing, particularly of pharmaceuticals, and drying processes, including spray drying, fluid bed drying and granulation, and dryer selection and troubleshooting, as well as energy reduction, sustainability, and pinch analysis.



Klappentext

Pinch Analysis for Energy and Carbon Footprint Reduction is the only dedicated pinch analysis and process integration guide, covering a breadth of material from foundational knowledge to in-depth processes. Readers are introduced to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature, and the golden rules of pinch-based design to meet energy targets. More advanced topics include the extraction of stream data necessary for a pinch analysis, the design of heat exchanger networks, hot and cold utility systems, combined heat and power (CHP), refrigeration, batch- and time-dependent situations, and optimization of system operating conditions, including distillation, evaporation, and solids drying.

This new edition offers tips and techniques for practical applications, supported by several detailed case studies. Examples stem from a wide range of industries, including buildings and other non-process situations. This reference is a must-have guide for chemical process engineers, food and biochemical engineers, plant engineers, and professionals concerned with energy optimization, including building designers.

  • Covers practical analysis of both new and existing processes
  • Teaches readers to extract the stream data necessary for a pinch analysis and describes the targeting process in depth; includes a downloadable spreadsheet to calculate energy targets
  • Demonstrates how to achieve the targets by heat recovery, utility system design, and process change
  • Updated to include carbon footprint, water and hydrogen pinch, developments in industrial applications and software, site data reconciliation, additional case studies, and answers to selected exercises



Inhalt

1. Introduction

1.1 What is pinch analysis?

1.2 Historical development and industrial experience

1.3 Why does pinch analysis work?

1.4 The concept of process synthesis

1.5 Hierarchy of energy reduction

1.6 The role of thermodynamics in process design

1.7 Learning and applying the techniques

1.8 A note on terminology

2. Carbon footprint and primary energy

2.1 Introduction

2.2 Definition of carbon footprint

2.3 Primary energy

2.4 Carbon dioxide emissions and carbon footprint

2.5 Components of carbon footprint

2.6 Carbon pinch and emissions targeting

2.7 Energy costs

2.8 Conclusions

3. Key concepts of pinch analysis

3.1 Heat recovery and heat exchange

3.2 The pinch and its significance

3.3 Heat exchanger network design

3.4 Choosing Tmin: supertargeting

3.5 Methodology of pinch analysis

3.6 Worked exercise

4. Data extraction and energy targeting

4.1 Data extraction

4.2 Case study - organics distillation plant

4.3 Energy targeting

4.4 Multiple utilities

4.5 More advanced energy targeting

4.6 Targeting heat exchange units, area and shells

4.7 Supertargeting; cost targeting for optimal Tmin

4.8 Targeting for organics distillation plant case study

4.9 Exercises

Appendix - Algorithms for Problem Table and composite curves

5. Heat exchanger network design

5.1 Introduction

5.2 Heat exchange equipment

5.3 Stream splitting and cyclic matching

5.4 Network relaxation

5.5 More complex designs

5.6 Multiple pinches and near-pinches

5.7 Retrofit design

5.8 Operability; multiple base case design

5.9 Network design for organics distillation case study

5.10 Conclusions

5.11 Exercises

6. Utilities, heat and power systems

6.1 Concepts

6.2 Combined heat and power systems

6.3 Heat pumps and refrigeration systems

6.4 Total site analysis

6.5 Worked example - organics distillation unit

6.6 Worked case study and example for total site problem table algorithm

6.7 Case studies and examples

6.8 Exercises

7. Process change and evolution

7.1 Concepts

7.2 General principles

7.3 Reactor systems

7.4 Distillation columns

7.5 Evaporator systems

7.6 Flash systems

7.7 Solids drying

7.8 Other separation methods

7.9 Application to the organics distillation process case study

7.10 Summary and conclusions

7.11 Exercises

8. Batch and time-dependent processes

8.1 Introduction

8.2 Concepts

8.3 Types of streams in batch processes

8.4 Time intervals

8.5 Calculating energy targets

8.6 Heat exchanger network design

8.7 Rescheduling

8.8 Debottlenecking

8.9 Other time-dependent applications

8.10 Conclusions

9. Water, hydrogen, and carbon pinch

9.1 Introduction

9.2 Concepts

9.3 Key steps in mass pinch analysis

9.4 Application and case study for water pinch analysis (Glove Industry)

9.5 Application and case study for hydrogen pinch analysis

9.6 Conclusions for water and hydrogen pinch analysis

9.7 Carbon pinch

10. Applying the technology in practice

10.1 Introduction

10.2 How to do a pinch study

10.3 Heat and mass balance

10.4 Stream data extraction

10.5 Targeting and network design

10.6 Project evaluation…

Titel
Pinch Analysis for Energy and Carbon Footprint Reduction
Untertitel
User Guide to Process Integration for the Efficient Use of Energy
EAN
9780081025376
Format
E-Book (epub)
Genre
Veröffentlichung
08.08.2020
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
46.91 MB
Anzahl Seiten
566