This third edition of Aircraft Systems represents a timely
update of the Aerospace Series' successful and widely
acclaimed flagship title. Moir and Seabridge present an in-depth
study of the general systems of an aircraft - electronics,
hydraulics, pneumatics, emergency systems and flight control to
name but a few - that transform an aircraft shell into a living,
functioning and communicating flying machine. Advances in systems
technology continue to alloy systems and avionics, with aircraft
support and flight systems increasingly controlled and monitored by
electronics; the authors handle the complexities of these overlaps
and interactions in a straightforward and accessible manner that
also enhances synergy with the book's two sister volumes,
Civil Avionics Systems and Military Avionics Systems.
Aircraft Systems, 3rd Edition is thoroughly
revised and expanded from the last edition in 2001, reflecting the
significant technological and procedural changes that have occurred
in the interim - new aircraft types, increased electronic
implementation, developing markets, increased environmental
pressures and the emergence of UAVs. Every chapter is updated, and
the latest technologies depicted. It offers an essential reference
tool for aerospace industry researchers and practitioners such as
aircraft designers, fuel specialists, engine specialists, and
ground crew maintenance providers, as well as a textbook for senior
undergraduate and postgraduate students in systems engineering,
aerospace and engineering avionics.
Autorentext
Lan Moir After 20 years in the royal Air Force as an engineering officer, Ian went on to Smiths Industries in the UK where he was involved in a number of advanced projects. Since retiring from Smiths he is now in demand as a highly respected consultant. Ian has a brad and detailed experience working in aircraft avionics systems in both military and civil aircraft. From the RAF Tornado and Apache helicopter to the Boeing 777, Ian's work has kept him at the forefront of new system developments and integrated systems in the areas of more-electric technology and systems implementations. He has a special interest in fostering training and education in aerospace engineering.
Allan Seabridge was until recently the Chief Flight Systems Engineer at BAE Systems at Warton in Lancashire in the UK. In over 30 years in the aerospace industry his work has latterly included the avionics systems on the Nimrod MRA 4 and Lockheed Martin Lightning II (Joint Strike Fighter) as well as a the development of a range of flight and avionics systems on a wide range of fast jets, training aircraft and ground and maritime surveillance projects. Spending much of his time between Europe and the US, Allan is fully aware of systems developments worldwide. he is also keen to encourage a further understanding of integrated engineering systems. An interest in engineering education continues with the design and delivery of systems and engineering courses at a number of UK universities at undergraduate and postgraduate level.
Zusammenfassung
This third edition of Aircraft Systems represents a timely update of the Aerospace Series' successful and widely acclaimed flagship title. Moir and Seabridge present an in-depth study of the general systems of an aircraft electronics, hydraulics, pneumatics, emergency systems and flight control to name but a few - that transform an aircraft shell into a living, functioning and communicating flying machine. Advances in systems technology continue to alloy systems and avionics, with aircraft support and flight systems increasingly controlled and monitored by electronics; the authors handle the complexities of these overlaps and interactions in a straightforward and accessible manner that also enhances synergy with the book's two sister volumes, Civil Avionics Systems and Military Avionics Systems.
Aircraft Systems, 3rd Edition is thoroughly revised and expanded from the last edition in 2001, reflecting the significant technological and procedural changes that have occurred in the interim new aircraft types, increased electronic implementation, developing markets, increased environmental pressures and the emergence of UAVs. Every chapter is updated, and the latest technologies depicted. It offers an essential reference tool for aerospace industry researchers and practitioners such as aircraft designers, fuel specialists, engine specialists, and ground crew maintenance providers, as well as a textbook for senior undergraduate and postgraduate students in systems engineering, aerospace and engineering avionics.
Inhalt
Foreword xvii
Series Preface xix
About the Authors xxi
Acknowledgements xxiii
List of Abbreviations xxv
Introduction xxxv
Systems Integration xxxvi
Systems Interaction xxxix
1 Flight Control Systems 1
1.1 Introduction 1
1.2 Principles of Flight Control 3
1.3 Flight Control Surfaces 4
1.4 Primary Flight Control 5
1.5 Secondary Flight Control 5
1.6 Commercial Aircraft 7
1.6.1 Primary Flight Control 7
1.6.2 Secondary Flight Control 7
1.7 Flight Control Linkage Systems 9
1.7.1 Push-Pull Control Rod System 10
1.7.2 Cable and Pulley System 11
1.8 High Lift Control Systems 13
1.9 Trim and Feel 15
1.9.1 Trim 15
1.9.2 Feel 17
1.10 Flight Control Actuation 18
1.10.1 Simple Mechanical/Hydraulic Actuation 19
1.10.2 Mechanical Actuation with Electrical Signalling 21
1.10.3 Multiple Redundancy Actuation 22
1.10.4 Mechanical Screwjack Actuator 26
1.10.5 Integrated Actuator Package (IAP) 27
1.10.6 Advanced Actuation Implementations 30
1.11 Civil System Implementations 34
1.11.1 Top-Level Comparison 35
1.11.2 Airbus Implementation 36
1.12 Fly-By-Wire Control Laws 40
1.13 A380 Flight Control Actuation 41
1.14 Boeing 777 Implementation 44
1.15 Interrelationship of Flight Control, Guidance and Flight Management 48
2 Engine Control Systems 51
2.1 Introduction 51
2.1.1 Engine/Airframe Interfaces 52
2.2 Engine Technology and Principles of Operation 53
2.3 The Control Problem 55
2.3.1 Fuel Flow Control 56
2.3.2 Air Flow Control 58
2.3.3 Control Systems 59
2.3.4 Control System Parameters 60
2.3.5 Input Signals 60
2.3.6 Output Signals 62
2.4 Example Systems 62
2.5 Design Criteria 71
2.6 Engine Starting 73
2.6.1 Fuel Control 73
2.6.2 Ignition Control 74
2.6.3 Engine Rotation 75
2.6.4 Throttle Levers 77
2.6.5 Starting Sequence 78
2.7 Engine Indications 78
2.8 Engine Oil Systems 81
2.9 Engine Offtakes 81
2.10 Reverse Thrust 83
2.11 Engine Control on Modern Civil Aircraft 84
3 Fuel Systems 87
3.1 Introduction 87
3.2 Characteristics of Fuel Systems 89
3.3 Description of Fuel System Components 90
3.3.1 Fuel Transfer Pumps 90
3.3.2 Fuel Booster Pumps 91
3.3.3 Fuel Transfer Valves 92
3.3.4 Non-Return Valves (NRVs) 93
3.4 Fuel Quantity Measurement 94
3.4.1 Level Sensors 94
3.4.2 Fuel Gauging Probes 96
3.4.3 Fuel Quantity Measurement Basics 96
3.4.4 Tank Shapes 97
3.4.5 Fuel Properties 98
3.4.6 Fuel Quantity Measurement Systems 101
3.4.7 Fokker F50/F100 System 101
3.4.8 Airbus A320 System 103
3.4.9 'Smart' Probes 104
3.4.10 Ultrasonic Probes 105
3.5 Fuel System Operating Modes 105
3.5.1 Pressurisation 106
3.5.2 Engine Feed 106
3.5.3 Fuel …