This monograph outlines the structure of index form equations, and makes clear their relationship to other classical types of Diophantine equations. In order to more efficiently determine generators of power integral bases, several algorithms and methods are presented to readers, many of which are new developments in the field. Additionally, readers are presented with various types of number fields to better facilitate their understanding of how index form equations can be solved. By introducing methods like Baker-type estimates, reduction methods, and enumeration algorithms, the material can be applied to a wide variety of Diophantine equations. This new edition provides new results, more topics, and an expanded perspective on algebraic number theory and Diophantine Analysis.
Klappentext
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Inhalt
Introduction.- Auxiliary results, tools.- Thue equations.- Inhomogeneous Thue equations.- Relative Thue equations.- The resolution of norm form equations.- Index form equations in general.- Cubic fields.- Quartic fields.- Quintic fields.- Sextic fields.- Pure fields.- Cubic relative extensions.- Quartic relative extensions.- Some higher degree fields.- Tables.