This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah's algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.



Inhalt

1 Introduction.- 2 Theoretical Background.- 3 Literature Review.- 4 Algebraic-Geometric Non-Binary Block Turbo Codes.- 5 Irregular Decoding of Algebraic-Geometric Block Turbo Codes.- 6 Conclusions.

Titel
Forward Error Correction Based On Algebraic-Geometric Theory
EAN
9783319082936
ISBN
978-3-319-08293-6
Format
E-Book (pdf)
Herausgeber
Veröffentlichung
12.06.2014
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
2.3 MB
Anzahl Seiten
70
Jahr
2014
Untertitel
Englisch