Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: * important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions * expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment * brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels * futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors * an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website href="http://www.wiley.com/go/electricvehicle2e">www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.
Autorentext
Dr John Lowry, Acenti Designs Ltd., Swindon, UK
Dr John Lowry is an engineer who has worked in industry and academia. He studied for his PhD at Queen Mary College, London University, and is a Fellow of the Institute of Mechanical Engineers, a Fellow of the Energy Institute and a Fellow of the Institute of Engineering and Technology. He was a Principal Lecturer at Oxford Brookes University from 1983 to 2001. He has acted as a consultant to numerous organisations in the UK and abroad and has been a consultant to the UN.
Mr James Larminie, Oxford Brookes University, Oxford, UK
James Larminie is a Principal Lecturer and is Director of Postgraduate Studies in the School of Technology at Oxford Brookes University. He co-authored the first edition of Electric Vehicle Technology Explained with Jon Lowry, which was published by John Wiley & Sons in 2003.
Zusammenfassung
Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains.
This new edition includes:
- important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions
- expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment
- brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels
- futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors
- an examination of EV efficiencies, energy consumption and sustainable power generation.
MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e
Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.
Inhalt
About the Author xiii
Preface xv
Acknowledgments xvii
Abbreviations xix
Symbols xxiii
1 Introduction 1
1.1 A Brief History 2
1.1.1 Early Days 2
1.1.2 The Middle of the Twentieth Century 7
1.1.3 Developments towards the End of the Twentieth Century and the Early Twenty-First Century 8
1.2 Electric Vehicles and the Environment 13
1.2.1 Energy Saving and Overall Reduction of Carbon Emissions 14
1.2.2 Reducing Local Pollution 15
1.2.3 Reducing Dependence on Oil 15
1.3 Usage Patterns for Electric Road Vehicles 15
Further Reading 17
2 Types of Electric Vehicles - EV Architecture 19
2.1 Battery Electric Vehicles 19
2.2 The IC Engine/Electric Hybrid Vehicle 19
2.3 Fuelled EVs 24
2.4 EVs using Supply Lines 25
2.5 EVs which use Flywheels or Supercapacitors 25
2.6 Solar-Powered Vehicles 26
2.7 Vehicles using Linear Motors 27
2.8 EVs for the Future 27
Further Reading 27
3 Batteries, Flywheels and Supercapacitors 29
3.1 Introduction 29
3.2 Battery Parameters 30
3.2.1 Cell and Battery Voltages 30
3.2.2 Charge (or Amphour) Capacity 31
3.2.3 Energy Stored 32
3.2.4 Specific Energy 33
3.2.5 Energy Density 33
3.2.6 Specific Power 34
3.2.7 Amphour (or Charge) Efficiency 34
3.2.8 Energy Efficiency 35
3.2.9 Self-discharge Rates 35
3.2.10 Battery Geometry 35
3.2.11 Battery Temperature, Heating and Cooling Needs 35
3.2.12 Battery Life and Number of Deep Cycles 35
3.3 Lead Acid Batteries 36
3.3.1 Lead Acid Battery Basics 36
3.3.2 Special Characteristics of Lead Acid Batteries 38
3.3.3 Battery Life and Maintenance 40
3.3.4 Battery Charging 40
3.3.5 Summary of Lead Acid Batteries 41
3.4 Nickel-Based Batteries 41
3.4.1 Introduction 41
3.4.2 Nickel Cadmium 41
3.4.3 Nickel Metal Hydride Batteries 44
3.5 Sodium-Based Batteries 46
3.5.1 Introduction 46
3.5.2 Sodium Sulfur Batteries 47
3.5.3 Sodium Metal Chloride (ZEBRA) Batteries 48
3.6 Lithium Batteries 50
3.6.1 Introduction 50
3.6.2 The Lithium Polymer Battery 50
3.6.3 The Lithium Ion Battery 51
3.7 Metal-Air Batteries 52
3.7.1 Introduction 52
3.7.2 The Aluminium-Air Battery 52
3.7.3 The Zinc-Air Battery 53
3.8 Supercapacitors and Flywheels 54
3.8.1 Supercapacitors 54
3.8.2 Flywheels 56
3.9 Battery Charging 59
3.9.1 Battery Chargers 59
3.9.2 Charge Equalisation 60
3.10 The Designer's Choice of Battery 63
3.10.1 Introduction 63
3.10.2 Batteries which are Currently Available Commercially 63
3.11 Use of Batteries in Hybrid Vehicles 64
3.11.1 Introduction 64
3.11.2 IC/Battery Electric Hybrids 64
3.11.3 Battery/Battery Electric Hybrids 64
3.11.4 Combinations using Flywheels 65
3.11.5 Complex Hybrids 65
3.12 Battery Modelling 65
3.12.1 The Purpose of Battery Modelling 65
3.12.2 Battery Equivalent Circuit 66
3.12.3 Modelling Battery Capacity 68
3.12.4 Simulating a Battery at a Set Power 71
3.12.5 Calculating the Peukert Coefficient 75
3.12.6 Approximate Battery Sizing 76
3.13 In Conclusion 77
References 78
4 Electr…