As the need for geographical data rapidly expands in the 21st century, so too do applications of small-format aerial photography for a wide range of scientific, commercial and governmental purposes. Small-format Aerial Photography (SFAP) presents basic and advanced principles and techniques with an emphasis on digital cameras. Unmanned platforms are described in considerable detail, including kites, helium and hot-air blimps, model airplanes, and paragliders. Several case studies, primarily drawn from the geosciences, are presented to demonstrate how SFAP is actually used in various applications. Many of these integrate SFAP with ground-based investigations as well as conventional large-format aerial photography, satellite imagery, and other kinds of geographic information. - Full-color photographs throughout - Case studies from around the globe - Techniques presented allow for image resolution impossible to match via traditional aerial photography or satellite datasets - Glossary clarifies key terms



Autorentext

Dr. Aber has a PhD in Geology from the University of Kansas. His interests and research experience are wide ranging in geology, tectonics, landscape evolution, wetland environments, remote sensing, aerial photography, and energy resources. He has conducted field investigations across the United States as well as Canada, Scandinavia, Central Europe and Japan. He is a distinguished professor at Emporia State University, Kansas.



Klappentext

As the need for geographical data rapidly expands in the 21st century, so too do applications of small-format aerial photography for a wide range of scientific, commercial and governmental purposes. Small-format Aerial Photography (SFAP) presents basic and advanced principles and techniques with an emphasis on digital cameras. Unmanned platforms are described in considerable detail, including kites, helium and hot-air blimps, model airplanes, and paragliders. Several case studies, primarily drawn from the geosciences, are presented to demonstrate how SFAP is actually used in various applications. Many of these integrate SFAP with ground-based investigations as well as conventional large-format aerial photography, satellite imagery, and other kinds of geographic information.

  • Full-color photographs throughout
  • Case studies from around the globe
  • Techniques presented allow for image resolution impossible to match via traditional aerial photography or satellite datasets
  • Glossary clarifies key terms



Inhalt

Part I

Chapter 1: Introduction to small-format aerial photography

1-1. Overview

1-2. Brief history

1-2.1. 19th century

1-2.2. 20th century

1-3. Photography and imagery

1-4. Conventional aerial photography

1-5. Small-format aerial photography

1-6. Summary

Chapter 2: Basic principles of SFAP

2-1. Remote sensing

2-1.1. Ideal remote sensing

2-1.2. Actual SFAP

2-2. Common aspects of SFAP

2-2.1. Image vantage

2-2.2. Photographic scale and resolution

2-2.3. Relief displacement

2-2.4. Stereoscopic images

2-3. Photographic storage

2-4. Summary

Chapter 3: Photogrammetry

3-1. Introduction

3-2. Geometry of single photographs

3-2.1. Vertical photography

3-2.2. Tilted photography

3-2.3. Interior orientation

3-2.4. Exterior orientation

3-3. Geometry of stereophotographs

3-3.1. Principle of stereoscopic viewing

3-3.2. Base-height ratio and stereoscopic coverage

3-3.3. 3D measurements from stereomodels

3-3.4. Creating stereomodels with aerial triangulation by bundle-block adjustment

3-4. Quantitative analysis of photographs

3-4.1. Measuring and mapping from single photographs

3-4.2. Manual measuring and mapping from stereomodels

3-4.3. Automatic DEM extraction from stereomodels

3-5. Summary

Chapter 4: Lighting and atmospheric conditions

4-1. Introduction

4-2. Multiview-angle effects

4-3. Bidirectional reflectance distribution function

4-4. Multispectral effects

4-5. Latitude and seasonal conditions

4-6. Clouds

4-7. Shadows

4-8. Summary

Chapter 5: Photographic composition

5-1. Introduction

5-2. Basic elements of photographic composition

5-2.1. Oblique and vertical views

5-2.2. Linear features

5-2.3. Image depth

5-2.4. Pattern and texture

5-2.5. Color

5-3. Combining compositional elements

5-4. Photographs vs. human vision

5.5. Summary

Part II

Chapter 6: Cameras for SFAP

6-1. Introduction

6-2. Film camera basics

6-3. Digital camera basics

6-3.1. Types of digital cameras

6-3.2. Image sensors

6-3.3. Image file formats

6-4. Camera geometry and light

6-4.1. Focal length

6-4.2. Lens aperture

6-4.3. Shutter speed

6-4.4. Film speed or ISO rating

6-4.5. Camera exposure settings

6-4.6. Image degradation

6-5. Color-infrared photography

6-6. Camera capabilities for SFAP

6-6.1. Camera lens

6-6.2. Image sensor

6-6.3. File format

6-6.4. Camera type

6-6.5. Camera calibration

6-7. Summary

Chapter 7: Camera mounting systems

7-1. Introduction

7-2. Camera operation

7-3. Detachable mounts

7-3.1. Single-camera suspended rigs

7-3.2. Multiple-camera suspended rigs

7-3.3. Attaching suspendable mounts to a platform

7-3.4. Detactable modular unit mounts

7-4. Fixed mounts

7-5. Summary

Chapter 8: Platforms for SFAP

8-1. Introduction

8-2. Manned light-sport aircraft

8-2.1. Powered light-sport aircraft

8-2.2. Unpowered light-sport aircraft

8-3. Lighter-than-air platforms

8-3.1. Lifting gases

8-3.2. Helium blimp

8-3.3. Hot-air blimp

8-4. Kite aerial photography

8-4.1. Kites for SFAP

8-4.2. Kite-flying equipment

8-4.3. Ground operations

8-5. Drones for SFAP

8-5.1. Basic model airplane

8-5.2. Autopiloted model airplane

8-5.3. Powered paraglider

8-6. Pros and cons of different platforms

8-7. Summary

Chapter 9: SFAP survey planning and implementation

9-1. Introduction

9-2. Travel and equipment logistics

9-3. Site accessibility and characteristics

9-3.1. Local site accessibility

9-3.2. Flight obstacles

9-3.3. Local wind conditions

9-3.4. High-altitude SFAP

9-4. Ground Control

9-4.1. GCP installation

9-4.2. GCP coordinate measurement

9-5. Flight planning considerations

9-5.1. Image scale and resolution

9-5.2. Stereoscopic and large-area coverage

9-6. Flight planning example

9-6.1. Initial calculations: Complete coverage with single image

9-6.2. Revised calulations: Optimal image resolution

9-6.3. Consequences for aerial survey design

9-6.4. Ideal flightline calculation

9-7. Flight planning for oblique SFAP

9-8. Legal issues

9-8.1. German regulations

9-8.2. Regulations in the U.S. and other countries

9-8.3. Insurance

9-9. Summary

Chapter 10. Image interpretation

10-1. Introduction

10-2. Image interpretability

10-3. SFAP interpretation

10-3.1. Water and drainage

10-3.2. Geomorphology

10-3.3. Vegetation and agriculture

10-3.4. Cultural heritage and archaeology

10-3.5. Soils

10-4. Summary

Chapter 11: Image processing and analysis

11-1. Introduction

11-2. Geometric correction and georeferencing

11-2.…

Titel
Small-Format Aerial Photography
Untertitel
Principles, Techniques and Geoscience Applications
EAN
9780080932835
Format
E-Book (epub)
Genre
Veröffentlichung
28.05.2010
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
50.82 MB
Anzahl Seiten
268