The book covers the most important materials (naturals, metals, ceramics, polymers and composites) to be used mainly as structural engineering materials. Their main applications based on the properties are described in the first chapters of the book: mechanical, physical and chemical. The second part of the book is dedicated to the conceptual design by properties for a certain structural application: stiffness, mechanical strength, toughness, fatigue resistance, creep, etc., taking into account the weight and the cost. One of the chapters of the second part of the book is focused on the heat treatments of steels in order to improve their resistance to fatigue. The book concludes with a critical comparison between materials considering their production, properties and cost, and the forecast about the utilization of the different fields of materials in structural applications.
Autorentext
José Antonio Pero-Sanz Elorz (1934-2012) had a Doctorate in Engineering from the University of Barcelona (Spain), was a founder member of the International Metallographic Society (USA), a fellow of the Institute of Materials, Minerals and Mining (UK) and Mêmbre d'Honneour de la Société Française de Métallurgie et des Matériaux. He was adviser on Physical Metallurgy matters for the United Nations Industrial Development Organization (UNIDO) as well as for Arcelor Mittal-Europe and was member of the Conseil Scientifique des Usines Renault. He was the Responsible of Research and Development of the Group of Materials in the Oviedo and Madrid School of Mines and professor in both schools for more than 30 years. He has published several books: Materiales Metálicos. Solidificación, Diagramas, Transformaciones (Dossat, Madrid, 1988, ISBN: 84-237-0729-6); Materiales para Ingeniería. Fundiciones Férreas (Dossat, Madrid, 1994, ISBN: 84-237-0822-5); Ciencia e Ingeniería de Materiales. Estructura, Transformaciones, Propiedades y Selección (5 editions, Dossat 2000, Madrid, 2000, ISBN: 84-95312-18-2); Aceros. Metalurgia Física, Selección y Diseño (Dossat 2000, Madrid, 2004, ISBN: 84-89656-54-1); Solidification and Solid-state Transformations of Metals and Alloys (Elsevier, Amsterdam, 2017, ISBN: 978-0-12-812607-3); Materiales para Ingeniería. Fundiciones Férreas (Pedeca Press Publicaciones S. L. U., Madrid, 2018, ISBN: 978-84-697-8834-9); Physical Metallurgy of Cast Irons (Springer International Publishing, Chem (Switzerland), 2018, ISBN ebook: 978-3-319-97313-5; DOI: 10.1007/978-3-319-97313-5; ISBN hardcover: 978-3-319-97312-8).
Daniel Fernández González (fernandezgdaniel@uniovi.es), Master in Mining Engineering and Materials Science and Technology from the University of Oviedo. Prize to the best end of degree project in the environmental field Gas Natural-Fenosa. Nowadays, he prepares his PhD. Student granted by the Spanish Government in the field of concentrated solar energy in metallurgy and materials. He is author of 15 articles in indexed journals, and he has published the books: Materiales para Ingeniería. Fundiciones Férreas (Pedeca Press Publicaciones S. L. U., Madrid, 2018, ISBN: 978-84-697-8834-9), Physical Metallurgy of Cast Irons (Springer International Publishing, Chem (Switzerland), 2018, ISBN ebook: 978-3-319-97313-5; DOI: 10.1007/978-3-319-97313-5; ISBN hardcover: 978-3-319-97312-8). He has participated in several research projects.
Luis Felipe Verdeja González (lfv@uniovi.es) has a PhD in Chemical Sciences from the University of Oviedo, where he is a professor of Materials Science and head of the Siderurgy, Metals and Materials Group (Sid-Met-Mat). His research focuses in the application, maintenance, and wear of refractory linings in blast furnaces and other metal and steels production processes. He has published more than 100 articles, and has participated in more than 40 research projects (public and private). He has published 8 books: Ciencia de Materiales (Eléctricos) (Servicio de Publicaciones de la Universidad de Oviedo, Oviedo, 1994, ISBN: 84-7468-804-3); Metalurgia Extractiva. Volumen I. Fundamentos (Síntesis, Madrid, 2000, ISBN: 84-7738-802-4); Metalurgia Extractiva. Volumen II. Procesos de Obtención (Síntesis, Madrid, 2000, ISBN: 84-7738-803-2); Prácticas y Problemas de Siderurgia (Fundación Luis Fernández Velasco, Oviedo, 2000, ISBN: 84-931202-2-7); Materiales Refractarios y Cerámicos (Síntesis, Madrid, 2008, ISBN: 978-84-975655-9-2); Refractory and Ceramic Materials (Síntesis, Madrid, 2014, ISBN: 978-84-907705-6-6); Solidification and Solid-state Transformations of Metals and Alloys (Elsevier, Amsterdam, 2017, ISBN: 978-0-12-812607-3); Materiales para Ingeniería. Fundiciones Férreas (Pedeca Press Publicaciones S. L. U., Madrid, 2018, ISBN: 978-84-697-8834-9); Physical Metallurgy of Cast Irons (Springer International Publishing, Chem (Switzerland), 2018, ISBN ebook: 978-3-319-97313-5; DOI: 10.1007/978-3-319-97313-5; ISBN hardcover: 978-3-319-97312-8).
Inhalt
Endorsement
Prologue and acknowledgement.
0. Conversion of units.
1. Introduction to the structural materials: naturals, metals, ceramics, polymers and composites.
1.1. Structural materials: naturals, metals, ceramics, polymers and composites.
1.2. Structural materials: natural materials.
2. Structural materials: Metals.
2.1. Structural metallic materials.
2.2. Ellingham's diagram G°(T) for the formation of metallic oxides.
2.3. The five main metals.
2.3.1. Iron.
2.3.2. Aluminium. 2.3.3. Copper.
2.3.3.1. Pilling-Bedworth volume ratio.
2.3.4. Zinc.
2.3.5. Lead.
2.4. Metals whose annual production is around 2·106 tons.
2.4.1. Nickel.
2.4.2. Magnesium.
2.4.3. Tin.
2.5. Other twelve strategic metals.
2.5.1. Silicon.
2.5.2. Titanium.
2.5.3. Refractory metals.
2.5.4. Metals for the nuclear industry.
2.5.4.1. Zirconium. 2.5.4.2. Beryllium.
2.6. Precious metals.
3. Structural materials: Ceramics.
3.1. Structural materials: ceramics.
3.1.1. Simple crystalline structures in ceramics, intermetallics and semiconductors.
3.1.1.1. NaCl or sodium chloride structures.
3.1.1.2. CsCl structure.
3.1.1.3. Diamond structure.
3.1.1.4. ZnS structure (sphalerite).
3.1.1.5. Complex structures in ceramics: CaF2, Al2O3, SiO2. 3.1.1.6. Al2O3 structure (corundum).
3.1.1.7. Crystalline quartz structure.
3.2. Tough ceramics.
3.2.1. Toughness in refractories and ceramics.
3.2.2. Mechanical resistance in the ceramic materials.
3.3. The simple components of the refractory materials: SiO2, Al2O3, CaO.
3.3.1. Crystalline silica.
3.3.2. Silica glass.
3.3.3. Alumina, Al2O3. Alumina refractories.
3.3.4. The SiO2-Al2O3 binary system.
3.3.5. Silicon-based refractories.
3.3.6. Silica-alumina refractories (%Al2O3<46%) and alumina refractories (46%< %Al2O3<72%).
3.3.6.1. Silica-alumina based ceramics (%Al2O3<46%).
3.3.6.2. Alumina-based (between 46 and 72% of Al2O3) refractories.
3.3.7. Mullite refractories (75% Al2O3).
3.3.8. The lime, CaO. 3.3.9. SiO2-CaO binary diagram.
3.3.10. SiO2-Al2O3-CaO ternary system. Slags and refractories used in the obtaining of steels.
3.3.11. Basic slags.
3.3.12. Basic refractories. 3.3.13. Basicity index.
3.4. Engineering ceramics.
3.4.1. Refractoriness. Thermal shock resistance.
4. Organic polymers.
4.1. Introdu…