* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow.

* Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.



Inhalt

1 Introduction.- 2 Special Solutions and Global Behaviour.- 3 Local Estimates via the Maximum Principle.- 4 Integral Estimates and Monotonicity Formulas.- 5 Regularity Theory at the First Singular Time.- A Geometry of Hypersurfaces.- B Derivation of the Evolution Equations.- C Background on Geometric Measure Theory.- D Local Results for Minimal Hypersurfaces.- E Remarks on Brakke¡¯s Clearing Out Lemma.- F Local Monotonicity in Closed Form.

Titel
Regularity Theory for Mean Curvature Flow
EAN
9780817682101
Format
E-Book (pdf)
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
1.75 MB
Anzahl Seiten
165