Homogeneous catalysis is an important strategy for the synthesis of high-valued chemicals. L. Brandsma has carefully selected and checked the experimental procedures illustrating the catalytic use of copper, nickel, and palladium compounds in organic synthesis. All procedures are on a preparative scale, make economic use of solvents and catalysts, avoid toxic substances and have high yields.



Inhalt

1 Catalysts, Ligands and Reagents.- 1.1 Catalysts.- 1.1.1 Copper Halides.- 1.1.1.1 Solubilization of Copper(I) Halides.- 1.1.2 Nickel Catalysts.- 1.1.2.1 Nickel(II)bromideis(triphenylphosphane).- 1.1.2.2 Nickel(II)chlorideis(triphenylphosphane).- 1.1.2.3 Nickel(II)chloride3-bis(diphenylphosphino) propane.- 1.1.2.4 Nickel(II)chloride2-bis(diphenylphosphino)ethane.- 1.1.2.5 Nickel(II)chloride4-bis(diphenylphosphino)butane.- 1.1.2.6 Nickel(II)chloride1?-bis(diphenylphosphino)ferrocene.- 1.1.2.7 Nickel(II)bromide1?-bis(diphenylphosphino)ferrocene.- 1.1.2.8 trans-Chloro(1-naphthyl)bis(triphenylphosphane)nickel.- 1.1.2.9 trans-Bromo(1-naphthyl)bis(triphenylphosphane)nickel and trans-Bromo(phenyl)bis(triphenyl-phosphane)nickel.- 1.1.3 Palladium Catalysts.- 1.1.3.1 Palladium(II)chlorideis(acetonitrile).- 1.1.3.2 Palladium(II)chlorideis(benzonitrile).- 1.1.3.3 Palladium(II)chlorideis(triphenylphosphane).- 1.1.3.4 Palladium(II)chloride4-bis(diphenylphosphino)butane.- 1.1.3.5 Palladium(II)chloride1?-bis(diphenylphosphino)ferrocene.- 1.1.3.6 Tetrakis(triphenylphosphane)palladium(0).- 1.1.3.7 Tris(dibenzylideneacetone)dipalladium(0)hloroform.- 1.2 Ligands.- 1.2.1 1,n-Bis(diphenylphosphino)alkanes (n= 2,3,4).- 1.2.1.1 1,2-Bis(diphenylphosphino)ethane.- 1.2.1.2 1,3-Bis(diphenylphosphino)propane.- 1.2.1.3 1,4-Bis(diphenylphosphino)butane.- 1.2.2 1,1?-Bis(diphenylphosphino)ferrocene.- 1.2.3 Triarylphosphanes and Tri(hetaryl)phosphanes.- 1.3 Organometallic Reagents.- 1.3.1 Preparation of Grignard Reagents from Mg and Organic Halides.- 1.3.2 Preparation of Organomagnesium and Organozinc Halides by Lithium-Magnesium or Lithium-Zinc Exchange.- 1.3.3 Preparation of Organoaluminum Intermediates.- 1.3.4 Preparation of Organoboron and Organotin Intermediates.- 1.3.4.1 2-Thiopheneboronic Acid.- 1.3.4.2 2-Furanboronic Acid.- 1.3.4.3 4-(Fluorophenyl)boronic Acid.- 1.3.4.4 (2-Methoxyphenyl)boronic Acid.- 1.3.4.5 2-Tributylstannylfuran.- 1.3.4.6 1-Methyl-2-tributylstannylpyrrole.- 1.3.4.7 4-Methyl-2-tributylstannylthiazole.- 1.3.4.8 Stannylation of Ethyl Vinyl Ether.- 2 Procedures for the Preparation of Halogen Compounds.- 2.1 sp-Halides.- 2.1.1 1-Bromo-1-propyne and 1-Bromo-1-butyne.- 2.1.2 1-Bromo-1-pentyne and 1-Bromo-1-hexyne.- 2.1.3 Other 1-Bromo-1-alkynes.- 2.1.4 Reaction of Alkynyllithium with Iodine in Organic Solvents.- 2.1.5 Preparation of Iodoacetylenes from Lithiated Acetylenes and Iodine in Liquid Ammonia.- 2.2 Aryl and Hetaryl Halides.- 2.2.1 2-Bromothiophene.- 2.2.2 2,5-Dibromothiophene.- 2.2.3 2,3,5-Tribromothiophene.- 2.2.4 3-Bromothiophene.- 2.2.5 2,3-Dibromothiophene.- 2.2.6 3,4-Dibromothiophene.- 2.2.7 2,4-Dibromothiophene.- 2.2.8 2-Bromofuran.- 2.2.9 2,3-Dibromofuran.- 2.2.10 3-Bromofuran.- 2.2.11 2,5-Dibromofuran.- 2.2.12 2-Iodothiophene.- 2.2.13 3-Iodothiophene.- 2.2.14 2-Iodofuran.- 2.2.15 2-Iodo-1-methylimidazole.- 2.2.16 2-Iodo-1-methylpyrrole.- 2.2.17 1-Bromo-4-iodobenzene.- 2.2.18 3-Bromoquinoline.- 2.3 Olefinic, Cycloolefinic and Allenic Halides.- 2.3.1 1-Bromo-2-methylpropene.- 2.3.2 ?-Bromostyrene.- 2.3.3 2-Bromo-1-ethoxyethene.- 2.3.4 3-Bromo-5,6-dihydro-4H-pyran.- 2.3.5 1-Bromocyclooctene.- 2.3.6 1-Chlorocyclohexene.- 2.3.7 Z-1,4-Dibromo-2-butene and 1-Bromo-1,3-butadiene.- 2.3.8 E-1,4-Dibromo-2-butene and 1-Bromo-1,3-butadiene.- 2.3.9 2-Bromo-1,3-butadiene.- 2.3.10 1-Bromo-3-methyl-1,2-butadiene.- 2.3.11 1-Bromo-1,2-butadiene.- 2.3.12 1-Bromocyclohexene.- 2.3.13 1-Bromocyclopentene.- 2.3.14 E-1-Bromo-1-octene.- 2.3.15 E-1-Iodo-1-heptene.- 3 Cross-Coupling Between 1-Alkynes and 1-Bromoalkynes.- 3.1 Introduction.- Table 1.- 3.2 Scope and Limitations.- 3.3 Relative Reactivities of the Acetylene and the Bromoacetylene.- Table 2.- 3.4 Conditions for the Coupling.- 3.5 Choice of the Reaction Partners.- 3.6 Side Reactions.- 3.7 Experimental Part.- 3.7.1 General Remarks and Some Observations.- 3.7.2 Performance of Cu-Catalyzed Cadiot-Chodkiewicz Couplings.- 3.7.3 Typical Procedure for the Pd/Cu-Catalyzed Cross Coupling Between 1-Bromo-1-alkynes and Acetylenes.- 4 Copper-Catalyzed Aminoalkylation of Acetylenes.- 4.1 Introduction, Scope and Mechanism.- 4.2 Experimental Part.- 4.2.1 Reaction of Acetylenic Alcohols with Dimethylaminomethanol.- 4.2.2 General Procedure for the Mannich Reaction of Acetylenes Without an OH-Function.- 4.2.3 Mannich Reactions with Gaseous Acetylenes.- 5 Copper(I)-Halide-Catalyzed Oxidative Coupling of Acetylenes.- 5.1 Introduction.- 5.2 Methods, Scope and Limitations.- 5.3 About the Mechanism.- 5.4 Experimental Part.- 5.4.1 Oxidative Coupling of Propargyl Alcohol Catalyzed by Copper(I)Chloride in Aqueous Medium.- 5.4.2 Oxidative Couplings Catalyzed by Copper(I)ChlorideMEDA in Acetone.- 5.4.2.1 Oxidative Coupling of Methyl Propargyl Ether.- 5.4.2.2 Oxidative Coupling of 3-Butyn-2-ol.- 5.4.2.3 Oxidative Coupling of 2-Methyl-3-butyn-2-ol.- 5.4.2.4 Oxidative Coupling of 3-Butyn-1-ol.- 5.4.2.5 Oxidative Coupling of 1-Methoxy-1-buten-3-yne.- 5.4.2.6 Oxidative Coupling of Arylacetylenes.- 5.4.2.7 Oxidative Coupling of Propargyl Alcohol.- 5.4.3 Oxidative Couplings Catalyzed by Copper(I)ChlorideMEDA in N,N-Dimethylformamide.- 5.4.3.1 Oxidative Coupling of 1,1-Diethoxy-2-propyne.- 5.4.3.2 Oxidative Coupling of Ethyl Propargyl Sulfide.- 5.4.4 Oxidative Couplings Catalyzed by Copper(I)Chloride in Pyridine.- 5.4.4.1 Oxidative Coupling of 4-Butyn-1-ol.- 5.4.4.2 Oxidative Coupling of 2-Ethynylpyridine.- 5.4.5 Oxidative Couplings Catalyzed by Copper(I)Chloride and Diazabicycloundecene.- 5.4.5.1 Oxidative Coupling of 1-Butyne.- 5.4.5.2 Oxidative Coupling of 2-Ethynyl-1-methylpyrrole.- 5.4.5.3 Oxidative Coupling of t-Butylacetylene.- 5.4.6 Oxidative Coupling of Trimethylsilylacetylene.- 5.4.7 Oxidative Coupling of the HCl-Salt of 3-Amino-3-methyl-1-butyne.- 5.5 Summary of Experimental Conditions for Oxidative Couplings.- Table 3.- 6 Copper(I)-Halide-Catalyzed Substitution of sp2-Halogen by Alkoxide.- 6.1 Introduction.- 6.2 Scope and Limitations of the Copper-Catalyzed Nucleophilic Substitution of sp2-Halogen by Alkoxy Groups.- Table 4.- 6.3 Mechanistic Investigations.- 6.4 Reaction Conditions.- 6.4.1 Solvent and Reaction Temperature.- 6.4.2 The Catalyst.- 6.5 Differences in the Reactivities of the Various sp2-Halides.- 6.6 Side Reactions.- 6.7 Applications.- 6.8 Experimental Part.- 6.8.1 General.- 6.8.1.1 Reaction Conditions and Observations.- 6.8.1.2 Apparatus and Equipment.- 6.8.2 Methoxylation.- 6.8.2.1 2-Methoxythiophene.- 6.8.2.2 3-Methoxythiophene.- 6.8.2.3 3-Methoxypyridine.- 6.8.2.4 3,4-Dimethoxythiophene.- 6.8.2.5 1-Methoxycyclooctene.- 6.8.3 Other Alkoxylations.- 6.8.3.1 2-Ethoxy thiophene.- 6.8.3.2 3-Ethoxythiophene.- 6.8.3.3 3-Isopropoxythiophene.- 6.8.3.4 2-(2?Dimethylaminoethoxy)furan.- 6.8.3.5 2-(2?Dimethylaminoethoxy)thiophene.- 6.8.3.6 1-(2?Dimethylaminoethoxy)cyclooctene.- 6.8.3.7 2-(2?Methoxyethoxy)thiophene.- 6.8.3.8 1,4-Bis(2,2,2-trifluoroethoxy)benzene.- 7 Copper-Catalyzed Carbon-Carbon Bond Formation by 1,1- and 1,3-Substitution Reactions.- 7.1 Introduction.- 7.2 Displacement of Halide, Tosylate and Acetate in Saturated Compounds.- 7.3 Ring Opening of Saturated Epoxides.- 7.4 Reactions with Allylic Substrates.- 7.5 Reactions with Propargylic and Allenic Substrates.- 7.6 About the Mechanism of Copper Catalyzed Substitutions.- 7.7 Experimental Section.- 7.7.1 Alkylation Reactions with Halides and Tosylates.- 7.7.1.1 2,2,7,7-Tetramethyloctane.- 7.7.1.2 5,5-Dimethylhexan-1-ol.- 7.7.1.3 Selective Substitution of Bromine in 1-Bromo-4-chlorobutane.- 7.7.1.4 Selective Mono-Substitutions with 1,n-Dibromoalk…

Titel
Application of Transition Metal Catalysts in Organic Synthesis
EAN
9783642603280
Format
E-Book (pdf)
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
335