A timely and authoritative guide to the state of the art of wave scattering
Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information.
The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the first volume, Theories and Applications, Leung Tsang (University of Washington) Jin Au Kong (MIT), and Kung-Hau Ding (Air Force Research Lab) cover:
* Basic theory of electromagnetic scattering
* Fundamentals of random scattering
* Characteristics of discrete scatterers and rough surfaces
* Scattering and emission by layered media
* Single scattering and applications
* Radiative transfer theory and solution techniques
* One-dimensional random rough surface scattering
Autorentext
Leung Tsang is the author of Scattering of Electromagnetic Waves: Theories and Applications, published by Wiley.
Jin Au Kong was an American expert in applied electromagnetics. He was a 74th-generation lineal descendent of the famous Chinese philosopher Confucius.
Klappentext
A timely and authoritative guide to the state of the art of wave scattering
Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information.
The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the first volume, Theories and Applications, Leung Tsang (University of Washington) Jin Au Kong (MIT), and Kung-Hau Ding (Air Force Research Lab) cover:
* Basic theory of electromagnetic scattering
* Fundamentals of random scattering
* Characteristics of discrete scatterers and rough surfaces
* Scattering and emission by layered media
* Single scattering and applications
* Radiative transfer theory and solution techniques
* One-dimensional random rough surface scattering
Inhalt
PREFACE xi
CHAPTER 1 INTRODUCTION TO ELECTROMAGNETIC SCATTERING BY A SINGLE PARTICLE 1
1 Basic Scattering Parameters 2
1.1 Scattering Amplitudes and Cross Sections 2
1.2 Scattering Amplitude Matrix 6
2 Rayleigh Scattering 9
2.1 Rayleigh Scattering by a Small Particle 9
2.2 Rayleigh Scattering by a Sphere 10
2.3 Rayleigh Scattering by an Ellipsoid 12
2.4 Scattering Dyads 14
3 Integral Representations of Scattering and Born Approximation 16
3.1 Integral Expression for Scattering Amplitude 16
3.2 Born Approximation 18
4 Plane Waves, Cylindrical Waves, and Spherical Waves 21
4.1 Cartesian Coordinates: Plane Waves 21
4.2 Cylindrical Waves 22
4.3 Spherical Waves 24
5 Acoustic Scattering 30
6 Scattering by Spheres, Cylinders, and Disks 32
6.1 Mie Scattering 32
6.2 Scattering by a Finite Length Cylinder Using the Infinite Cylinder Approximation 41
6.3 Scattering by a Disk Based on the Infinite Disk Approximation 46
References and Additional Readings 52
CHAPTER 2 BASIC THEORY OF ELECTROMAGNETIC SCATTERING 53
1 Dyadic Green's Function 54
1.1 Green's Functions 54
1.2 Plane Wave Representation 55
1.3 Cylindrical Waves 57
1.4 Spherical Waves 59
2 Huygens' Principle and Extinction Theorem 60
3 Active Remote Sensing and Bistatic Scattering Coefficients 66
4 Optical Theorem 68
5 Reciprocity and Symmetry 73
5.1 Reciprocity 73
5.2 Reciprocal Relations for Bistatic Scattering Coefficients and Scattering Amplitudes 75
5.3 Symmetry Relations for Dyadic Green's Function 79
6 Eulerian Angles of Rotation 81
7 T-Matrix 83
7.1 T-Matrix and Relation to Scattering Amplitudes 83
7.2 Unitarity and Symmetry 88
8 Extended Boundary Condition 91
8.1 Extended Boundary Condition Technique 91
8.2 Spheres 97
8.2.1 Scattering and Absorption for Arbitrary Excitation 100
8.2.2 Mie Scattering of Coated Sphere 102
8.3 Spheroids 104
References and Additional Readings 106
CHAPTER 3 FUNDAMENTALS OF RANDOM SCATTERING 107
1 Radar Equation for Conglomeration of Scatterers 108
2 Stokes Parameters and Phase Matrices 116
2.1 Elliptical Polarization, Stokes Parameters, Partial Polarization 116
2.2 Stokes Matrix 123
2.3 Scattering per Unit Volume and Phase Matrix 124
2.4 Rayleigh Phase Matrix 127
2.5 Phase Matrix of Random Media 129
3 Fluctuating Fields 131
3.1 Coherent and Incoherent Fields 131
3.2 Probability Distribution of Scattered Fields and Polarimetric Description 132
4 Specific Intensity 140
5 Passive Remote Sensing 145
5.1 Planck's Radiation Law and Brightness Temperature 145
5.2 KirchhofT's Law 149
5.3 Fluctuation Dissipation Theorem 152
5.4 Emissivity of Four Stokes Parameters 155
6 Correlation Function of Fields 161
References and Additional Readings 165
CHAPTER 4 CHARACTERISTICS OF DISCRETE SCATTERERS AND ROUGH SURFACES 167
1 Ice 168
2 Snow 170
3 Vegetation 171
4 Atmosphere 172
5 Correlation Function and Pair Distribution Function 173
5.1 Correlation Function 174
5.2 Pair Distribution Function 176
6 Gaussian Rough Surface and Spectral Density 179
7 Soil and Rock...