Applied Iterative Methods



Klappentext

Applied Iterative Methods



Inhalt

Preface

Acknowledgments


Notation


Chapter 1 Background on Linear Algebra and Related Topics


1.1 Introduction


1.2 Vectors and Matrices


1.3 Eigenvalues and Eigenvectors


1.4 Vector and Matrix Norms


1.5 Partitioned Matrices


1.6 The Generalized Dirichlet Problem


1.7 The Model Problem


Chapter 2 Background on Basic Iterative Methods


2.1 Introduction


2.2 Convergence and Other Properties


2.3 Examples of Basic Iterative Methods


2.4 Comparison of Basic Methods


2.5 Other Methods


Chapter 3 Polynomial Acceleration


3.1 Introduction


3.2 Polynomial Acceleration of Basic Iterative Methods


3.3 Examples of Nonpolynomial Acceleration Methods


Chapter 4 Chebyshev Acceleration


4.1 Introduction


4.2 Optimal Chebyshev Acceleration


4.3 Chebyshev Acceleration with Estimated Eigenvalue Bounds


4.4 Sensitivity of the Rate of Convergence to the Estimated Eigenvalues


Chapter 5 An Adaptive Chebyshev Procedure Using Special Norms


5.1 Introduction


5.2 The Pseudoresidual Vector d(n)


5.3 Basic Assumptions


5.4 Basic Adaptive Parameter and Stopping Relations


5.5 An Overall Computational Algorithm


5.6 Treatment of the W-Norm


5.7 Numerical Results


Chapter 6 Adaptive Chebyshev Acceleration


6.1 Introduction


6.2 Eigenvector Convergence Theorems


6.3 Adaptive Parameter and Stopping Procedures


6.4 An Overall Computational Algorithm Using the 2-Norm


6.5 The Estimation of the Smallest Eigenvalue µN


6.6 Numerical Results


> µ1


6.8 Singular and Eigenvector Deficient Problems


Chapter 7 Conjugate Gradient Acceleration


7.1 Introduction


7.2 The Conjugate Gradient Method


7.3 The Three-Term Form of the Conjugate Gradient Method


7.4 Conjugate Gradient Acceleration


7.5 Stopping Procedures


7.6 Computational Procedures


7.7 Numerical Results


Chapter 8 Special Methods for Red/Black Partitionings


8.1 Introduction


8.2 The RS-SI and RS-CG Methods


8.3 The CCSI and CCG Procedures


8.4 Numerical Results


8.5 Arithmetic and Storage Requirements


8.6 Combined (Hybrid) Chebyshev and Conjugate Gradient Iterations


8.7 Proofs


Chapter 9 Adaptive Procedures for the Successive Overrelaxation Method


9.1 Introduction


9.2 Consistently Ordered Matrices and Related Matrices


9.3 The SOR Method


9.4 Eigenvector Convergence of the SOR Difference Vector


9.5 SOR Adaptive Parameter and Stopping Procedures


9.6 An Overall Computational Algorithm


9.7 The SOR Method for Problems with Red/Black Partitionings


9.8 Numerical Results


9.9 On the Relative Merits of Certain Partitionings and Certain Iterative Procedures


9.10 Proofs of Theorems and Discussion of the Strategy Condition (9-5.21)


Chapter 10 The Use of Iterative Methods in the Solution of Partial Differential Equations


10.1 Introduction


10.2 The Time-Independent Two-Dimensional Problem


10.3 The Time-Independent Three-Dimensional Problem


10.4 The Time-Dependent Problem


Chapter 11 Case Studies


11.1 Introduction


11.2 The Two-Group Neutron Diffusion Problem


11.3 The Neutron Transport Equation in x-y Geometry


11.4 A Nonlinear Network Problem


Chapter 12 The Nonsymmetrizable Case


12.1 Introduction


12.2 Chebyshev Acceleration


12.3 Generalized Conjugate Gradient Acceleration Procedures


12.4 Lanczos Acceleration


12.5 Acceleration Procedures for the GCW Method


12.6 An Example


Appendix A Chebyshev Acceleration Subroutine


Appendix B CCSI Subroutine


Appendix C SOR Subroutine


Bibliography


Index

Titel
Applied Iterative Methods
EAN
9781483294377
Format
E-Book (pdf)
Veröffentlichung
28.06.2014
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
19.6 MB
Anzahl Seiten
386