This book presents a coherent introduction to the subject of asymptotic statistics as it has developed in the past 50 years. Professor Le Cam is one of the major researchers in this area and this book will make his results accessible to graduate students and researchers in statistics.



Klappentext

This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.



Inhalt

1 Introduction.- 2 Experiments, Deficiencies, Distances v.- 2.1 Comparing Risk Functions.- 2.2 Deficiency and Distance between Experiments.- 2.3 Likelihood Ratios and Blackwell's Representation.- 2.4 Further Remarks on the Convergence of Distri butions of Likelihood Ratios.- 2.5 Historical Remarks.- 3 Contiguity - Hellinger Transforms.- 3.1 Contiguity.- 3.2 Hellinger Distances, Hellinger Transforms.- 3.3 Historical Remarks.- 4 Gaussian Shift and Poisson Experiments.- 4.1 Introduction.- 4.2 Gaussian Experiments.- 4.3 Poisson Experiments.- 4.4 Historical Remarks.- 5 Limit Laws for Likelihood Ratios.- 5.1 Introduction.- 5.2 Auxiliary Results.- 5.2.1 Lindeberg's Procedure.- 5.2.2 Lévy Splittings.- 5.2.3 Paul Lévy's Symmetrization Inequalities.- 5.2.4 Conditions for Shift-Compactness.- 5.2.5 A Central Limit Theorem for Infinitesimal Arrays.- 5.2.6 The Special Case of Gaussian Limits.- 5.2.7 Peano Differentiable Functions.- 5.3 Limits for Binary Experiments.- 5.4 Gaussian Limits.- 5.5 Historical Remarks.- 6 Local Asymptotic Normality.- 6.1 Introduction.- 6.2 Locally Asymptotically Quadratic Families.- 6.3 A Method of Construction of Estimates.- 6.4 Some Local Bayes Properties.- 6.5 Invariance and Regularity.- 6.6 The LAMN and LAN Conditions.- 6.7 Additional Remarks on the LAN Conditions.- 6.8 Wald's Tests and Confidence Ellipsoids.- 6.9 Possible Extensions.- 6.10 Historical Remarks.- 7 Independent, Identically Distributed Observations.- 7.1 Introduction.- 7.2 The Standard i.i.d. Case: Differentiability in Quadratic Mean.- 7.3 Some Examples.- 7.4 Some Nonparametric Considerations.- 7.5 Bounds on the Risk of Estimates.- 7.6 Some Cases Where the Number of Observations Is Random.- 7.7 Historical Remarks.- 8 On Bayes Procedures.- 8.1 Introduction.- 8.2 Bayes Procedures Behave Nicely.- 8.3 The Bernstein-von Mises Phenomenon.- 8.4 A Bernstein-von Mises Result for the i.i.d. Case.- 8.5 Bayes Procedures Behave Miserably.- 8.6 Historical Remarks.- Author Index.

Titel
Asymptotics in Statistics
Untertitel
Some Basic Concepts
EAN
9781461211662
Format
E-Book (pdf)
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
24.89 MB
Anzahl Seiten
287