The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Inhalt
Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).
Titel
Gradient Flows
Untertitel
In Metric Spaces and in the Space of Probability Measures
EAN
9783764387228
ISBN
978-3-7643-8722-8
Format
E-Book (pdf)
Hersteller
Herausgeber
Genre
Veröffentlichung
29.10.2008
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
2.68 MB
Anzahl Seiten
334
Jahr
2008
Untertitel
Englisch
Auflage
2nd ed. 2008
Unerwartete Verzögerung
Ups, ein Fehler ist aufgetreten. Bitte versuchen Sie es später noch einmal.