System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.



Inhalt
Background.- Power Variation-Driven Dynamic Voltage Scaling.- Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling.- Energy-Efficient Multi-mode Embedded Systems.- Dynamic Voltage Scaling for Control Flow-Intensive Applications.- LOPOCOS: A Prototype Low Power Co-Synthesis Tool.- Conclusion.
Titel
System-Level Design Techniques for Energy-Efficient Embedded Systems
EAN
9780306487361
ISBN
978-0-306-48736-1
Format
E-Book (pdf)
Hersteller
Herausgeber
Veröffentlichung
16.01.2006
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
11.25 MB
Anzahl Seiten
194
Jahr
2006
Untertitel
Englisch