Provides fundamentals needed to apply impedance spectroscopy to a broad range of applications with emphasis on obtaining physically meaningful insights from measurements.

* Emphasizes fundamentals applicable to a broad range of applications including corrosion, biomedical devices, semiconductors, batteries, fuel cells, coatings, analytical chemistry, electrocatalysis, materials, and sensors

* Provides illustrative examples throughout the text that show how the principles are applied to common impedance problems

* New Edition has improved pedagogy, with more than twice the number of examples

* New Edition has more in-depth treatment of background material needed to understand impedance spectroscopy, including electrochemistry, complex variables, and differential equations

* New Edition includes expanded treatment of the influence of mass transport and kinetics and reflects recent advances in understanding frequency dispersion and constant-phase elements



Autorentext

Mark E. Orazem is a Distinguished Professor of Chemical Engineering at the University of Florida, adjunct professor at the Beijing University of Chemical Technology, a Fellow of the Electrochemical Society, past President of the International Society of Electrochemistry, and recipient of the 2012 ECS Linford Award for Outstanding Teaching. He organized the 6th International Symposium on Electrochemical Impedance Spectroscopy and teaches short courses on impedance spectroscopy for industry and for The Electrochemical Society.

Bernard Tribollet is Director of Research Emeritus at the Laboratory for Interfaces and Electrochemical Systems (LISE) at the University of Pierre and Marie Curie and adjunct professor at the Beijing University of Chemical Technology. He instructs an annual short course at his university on impedance spectroscopy. He is a Fellow of The Electrochemical Society, Treasurer of the International Society of Electrochemistry, and organized the 2010 Annual Meeting of the International Society of Electrochemistry held in Nice, France.

Inhalt

Preface to the Second Edition xvii

Preface to the First Edition xix

Acknowledgments xxiii

The Blind Men and the Elephant xxv

A Brief Introduction to Impedance Spectroscopy xxix

History of Impedance Spectroscopy xxxvii

I Background 1

1 Complex Variables 3

1.1 Why Imaginary Numbers? 3

1.2 Terminology 4

1.3 Operations Involving Complex Variables 5

1.4 Elementary Functions of Complex Variables 16

Problems 22

2 Differential Equations 25

2.1 Linear First-Order Differential Equations 25

2.2 Homogeneous Linear Second-Order Differential Equations 29

2.3 Nonhomogeneous Linear Second-Order Differential Equations 32

2.4 Chain Rule for Coordinate Transformations 36

2.5 Partial Differential Equations by Similarity Transformations 38

2.6 Differential Equations with Complex Variables 42

Problems 43

3 Statistics 45

3.1 Definitions 45

3.2 Error Propagation 53

3.3 Hypothesis Tests 59

Problems 70

4 Electrical Circuits 73

4.1 Passive Electrical Circuits 73

4.2 Fundamental Relationships 79

4.3 Nested Circuits 80

4.4 Mathematical Equivalence of Circuits 82

4.5 Graphical Representation of Circuit Response 82

Problems 85

5 Electrochemistry 87

5.1 Resistors and Electrochemical Cells 87

5.2 Polarization Behavior for Electrochemical Systems 90

5.3 Definitions of Potential 106

5.4 Rate Expressions 107

5.5 Transport Processes 111

5.6 Potential Contributions 117

5.7 Capacitance Contributions 120

5.8 Further Reading 124

Problems 125

6 Electrochemical Instrumentation 127

6.1 The Ideal Operational Amplifier 127

6.2 Elements of Electrochemical Instrumentation 129

6.3 Electrochemical Interface 131

Problems 135

II Experimental Considerations 137

7 Experimental Methods 139

7.1 Steady-State Polarization Curves 139

7.2 Transient Response to a Potential Step 140

7.3 Analysis in Frequency Domain 141

7.4 Comparison of Measurement Techniques 154

7.5 Specialized Techniques 155

Problems 160

8 Experimental Design 163

8.1 Cell Design 163

8.2 Experimental Considerations 168

8.3 Instrumentation Parameters 181

Problems 186

III Process Models 187

9 Equivalent Circuit Analogs 189

9.1 General Approach 189

9.2 Current Addition 190

9.3 Potential Addition 196

Problems 201

10 Kinetic Models 203

10.1 General Mathematical Framework 203

10.2 Electrochemical Reactions 205

10.3 Multiple Independent Electrochemical Reactions 218

10.4 Coupled Electrochemical Reactions 221

10.5 Electrochemical and Heterogeneous Chemical Reactions 229

Problems 235

11 Diffusion Impedance 237

11.1 Uniformly Accessible Electrode 238

11.2 Porous Film 239

11.3 Rotating Disk 249

11.4 Submerged Impinging Jet 259

11.5 Rotating Cylinders 262

11.6 Electrode Coated by a Porous Film 264

11.7 Impedance with Homogeneous Chemical Reactions 271

11.8 Dynamic Surface Films 280

Problems 290

12 Impedance of Materials 291

12.1 Electrical Properties of Materials 291

12.2 Dielectric Response in Homogeneous Media 292

12.3 Cole-Cole Relaxation 295

12.4 Geometric Capacitance 295

12.5 Dielectric Response of Insulating Non-Homogenous Media 297

12.6 ...

Titel
Electrochemical Impedance Spectroscopy
EAN
9781119340928
ISBN
978-1-119-34092-8
Format
E-Book (epub)
Hersteller
Herausgeber
Veröffentlichung
22.06.2017
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
29.99 MB
Anzahl Seiten
768
Jahr
2017
Untertitel
Englisch
Auflage
2. Aufl.