These lecture notes contain a guided tour to the Novikov Conjecture and related conjectures due to Baum-Connes, Borel and Farrell-Jones. They begin with basics about higher signatures, Whitehead torsion and the s-Cobordism Theorem. Then an introduction to surgery theory and a version of the assembly map is presented. Using the solution of the Novikov conjecture for special groups some applications to the classification of low dimensional manifolds are given.



Inhalt

A Motivating Problem.- to the Novikov and the Borel Conjecture.- Normal Bordism Groups.- The Signature.- The Signature Theorem and the Novikov Conjecture.- The Projective Class Group and the Whitehead Group.- Whitehead Torsion.- The Statement and Consequences of the s-Cobordism Theorem.- Sketch of the Proof of the s-Cobordism Theorem.- From the Novikov Conjecture to Surgery.- Surgery Below the Middle Dimension I: An Example.- Surgery Below the Middle Dimension II: Systematically.- Surgery in the Middle Dimension I.- Surgery in the Middle Dimension II.- Surgery in the Middle Dimension III.- An Assembly Map.- The Novikov Conjecture for ?n.- Poincaré Duality and Algebraic L-Groups.- Spectra.- Classifying Spaces of Families.- Equivariant Homology Theories and the Meta-Conjecture.- The Farrell-Jones Conjecture.- The Baum-Connes Conjecture.- Relating the Novikov, the Farrell-Jones and the Baum-Connes Conjectures.- Miscellaneous.- Exercises.- Hints to the Solutions of the Exercises.

Titel
The Novikov Conjecture
Untertitel
Geometry and Algebra
EAN
9783764373153
Format
E-Book (pdf)
Veröffentlichung
05.12.2005
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
1.64 MB
Anzahl Seiten
266