Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ



Autorentext

Michael J. Daniels, Joseph W. Hogan



Inhalt

Preface. Description of Motivating Examples. Regression Models. Methods of Bayesian Inference. Bayesian Analysis Using Data on Completers. Missing Data Mechanisms and Longitudinal Data. Inference about Full-Data Parameters under Ignorability. Case Studies: Ignorable Missingness. Modelsfor handling Nonignorable Missingness. Informative Priors and Sensitivity Analysis. Case Studies: Model Specification and Data Analysis under Missing Not at Random. Appendix. Bibliography. Index.

Titel
Missing Data in Longitudinal Studies
Untertitel
Strategies for Bayesian Modeling and Sensitivity Analysis
EAN
9781420011180
ISBN
978-1-4200-1118-0
Format
PDF
Herausgeber
Veröffentlichung
11.03.2008
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
3.41 MB
Anzahl Seiten
328
Jahr
2008
Untertitel
Englisch