The Leading Introduction to Biochemical and Bioprocess Engineering, Updated with Key Advances in Productivity, Innovation, and Safety

Bioprocess Engineering, Third Edition, is an extensive update of the world's leading introductory textbook on biochemical and bioprocess engineering and reflects key advances in productivity, innovation, and safety.

The authors review relevant fundamentals of biochemistry, microbiology, and molecular biology, including enzymes, cell functions and growth, major metabolic pathways, alteration of cellular information, and other key topics. They then introduce evolving biological tools for manipulating cell biology more effectively and to reduce costs of bioprocesses.

This edition presents major advances in the production of biologicals; highly productive techniques for making heterologous proteins; new commercial applications for both animal and plant cell cultures; key improvements in recombinant DNA microbe engineering; techniques for more consistent authentic post-translational processing of proteins; and other advanced topics. It includes new, improved, or expanded coverage of

  • The role of small RNAs as regulators
  • Transcription, translation, regulation, and differences between prokaryotes and eukaryotes
  • Cell-free processes, metabolic engineering, and protein engineering
  • Biofuels and energy, including coordinated enzyme systems, mixed-inhibition and enzyme-activation kinetics, and two-phase enzymatic reactions
  • Synthetic biology
  • The growing role of genomics and epigenomics Population balances and the Gompetz equation for batch growth and product formation
  • Microreactors for scale-up/scale-down, including rapid scale-up of vaccine production
  • The development of single-use technology in bioprocesses
  • Stem cell technology and utilization
  • Use of microfabrication, nanobiotechnology, and 3D printing techniques
  • Advances in animal and plant cell biotechnology

The text makes extensive use of illustrations, examples, and problems, and contains references for further reading as well as a detailed appendix describing traditional bioprocesses.

Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.



Autorentext

Dr. Michael L. Shuler is Samuel B. Eckert Professor of Engineering at Cornell University. He directed the School of Chemical Engineering (1998-2002) and was founding James and Marsha McCormick Chair for Biomedical Engineering (2004-2014). He also directs the Center on the Microenvironment and Metastasis (CMM), funded by the National Cancer Institute as a Physical Sciences - Oncology Center. He has received numerous teaching, advising, and research related awards, and has been elected to the National Academy of Engineering and the American Academy of Arts and Sciences.

Fikret Kargi is Professor in the Department of Environmental Engineering at Dokuz Eylul University. His interests include bioprocess engineering, environmental biotechnology, wastewater treatment, biotechnology-bioengineering, and waste bioprocessing. He holds a Ph.D. in Chemical/Biochemical Engineering from Cornell.

Matthew DeLisa is William L. Lewis Professor of Engineering in Cornell's Department of Chemical and Biomolecular Engineering. His research focuses on understanding and controlling the molecular mechanisms underlying protein biogenesis in the complex environment of a living cell. He has invented numerous commercially important technologies for facilitating the discovery, design and manufacturing of human drugs, and has made seminal discoveries about cellular protein folding and protein translocation. DeLisa has received several awards including an NSF CAREER award, and was named one of the top 35 young innovators by MIT's Technology Review. He was elected as a fellow of the American Institute for Medical and Biological Engineering in 2014.



Inhalt

Preface xvii

About the Authors xxi

Part 1: The Basics of Biology: An Engineer's Perspective 1

Chapter 1: What Is a Bioprocess Engineer? 1

1.1 Biotechnology and Bioprocess Engineering 2

1.2 Differing Approaches to Research for Biologists and Engineers 3

1.3 The Story of Penicillin: How Biologists and Engineers Work Together 4

1.4 Bioprocesses: Regulatory Constraints 9

Suggestions for Further Reading 11

Questions 11

Chapter 2: An Overview of Biological Basics 13

2.1 Microbial Diversity 13

2.2 Cell Construction 28

2.3 Cell Nutrients 51

2.4 Summary 56

Suggestions for Further Reading 58

Questions 58

Chapter 3: Enzymes 61

3.1 How Enzymes Work 62

3.2 Enzyme Kinetics 63

3.3 Immobilized Enzyme Systems 86

3.4 Large-Scale Production of Enzymes 98

3.5 Medical and Industrial Utilization of Enzymes 100

3.6 Summary 103

Suggestions for Further Reading 104

Problems 104

Chapter 4: How Cells Work 113

4.1 The Central Dogma 114

4.2 DNA Replication: Preserving and Propagating the Message 117

4.3 Transcription: Sending the Message 119

4.4 Translation: Going from Message to Product 123

4.5 Metabolic Regulation 130

4.6 How the Cell Senses its Extracellular Environment 135

4.7 Summary 139

4.8 Appendix: Example Regulation of Complex Pathways 140

Suggestions for Further Reading 142

Problems 143

Chapter 5: Major Metabolic Pathways 145

5.1 Bioenergetics 146

5.2 Glucose Metabolism: Glycolysis and the TCA Cycle 149

5.3 Respiration 152

5.4 Control Sites in Aerobic Glucose Metabolism 154

5.5 Metabolism of Nitrogenous Compounds 155

5.6 Nitrogen Fixation 156

5.7 Metabolism of Hydrocarbons 156

5.8 Biodegradation of Xenobiotics 157

5.9 Overview of Biosynthesis 158

5.10 Overview of Anaerobic Metabolism 161

5.11 Overview of Autotrophic Metabolism 163

5.12 Summary 165

Suggestions for Further Reading 166

Questions 168

Chapter 6: How Cells Grow 169

6.1 Batch Growth 170

6.2 Quantifying Growth Kinetics 191

6.3 Cell Growth in Continuous Culture 208

6.4 Summary 219

Suggestions for Further Reading 219

Problems 220

Chapter 7: Stoichiometry of Microbial Growth and Product Formation 227

7.1 Coefficients for ATP Consumption and Oxygen 227

7.2 Stoichiometric Calculations 229

7.3 Theoretical Predictions of Yield Coefficients 235

7.4 Estimation of Elemental Cell Composition 236

7.5 Stoichiometry by Oxidation-Reduction Half-Reactions 237

7.6 Thermodynamics of Biological Reactions 240

7.7 Summary 242

Suggestions for Further Reading 242

Problems 243

Chapter 8: How Cellular Information Is Altered 247

8.1 Evolving Desirable Biochemical Activities Through Mutation and Selection 247

8.2 Natural Mechanisms for Gene Transfer and Rearrangement 252

8.3 Genetically Engineering Cells 257

8.4 Genomics 267

8.5 Summary 272

Suggestions for Further Reading 272

Problems 273

Part 2: Engineering Principles for Bioprocesses 275

Chapter 9: Operating Considerations for Bioreactors for Suspension and Immobilized Cultures 275

9.1 Choosing the Cultivation Method 276

9.2 Modifying Batch and Continuous Reactors 278

9.3 Immobilized Cell Systems 298

9.4 Hybrid Bioreactors: Attached and Suspended Cells 311

9.5 Solid-State Fermentations 313

9.6 Summary 316…

Titel
Bioprocess Engineering
Untertitel
Basic Concepts
EAN
9780132901413
Format
ePUB
Hersteller
Veröffentlichung
29.03.2017
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
67.39 MB
Anzahl Seiten
640