The product of several years' effort to fill an educational gap, this text teaches computer scientists the fundamental physics of how a computer works. It includes both a standard introduction to physics and a thorough description of the physics of electronic devices. The mathematical complexities are alleviated by intuitive physical arguments.
Klappentext
This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks per semester. The lecture and recitation are complemented by a two-hour laboratory period per week for the first semester and a two-hour laboratory period biweekly for the second semester.
Inhalt
1 Physical Quantities.- 1.1 Introduction.- 1.2 Quantities and Units.- 1.3 Powers of 10.- 1.4 Accuracy of Numbers.- 2 Vectors.- 2.1 Introduction.- 2.2 Vector Components.- 2.3 Unit Vectors.- 2.4 Dot Product.- 2.5 Cross Product.- 3 Uniformly Accelerated Motion.- 3.1 Introduction.- 3.2 Speed and Velocity.- 3.3 Acceleration.- 3.4 Linear Motion.- 3.5 Projectile Motion.- 4 Newton's Laws.- 4.1 Introduction.- 4.2 Newton's Laws.- 4.3 Mass.- 4.4 Weight.- 4.5 Applications of Newton's Laws.- 4.6 Friction.- 5 Work, Energy and Power.- 5.1 Introduction.- 5.2 Work.- 5.3 Potential Energy.- 5.4 Work Done by a Variable Force.- 5.5 Kinetic Energy.- 5.6 Energy Conservation.- 5.7 Power.- 6 Momentum and Collisions.- 6.1 Introduction.- 6.2 Center of Mass.- 6.3 Motion of the Center of Mass.- 6.4 Momentum and its Conservation.- 6.5 Collisions.- 7 Rotational Motion.- 7.1 Introduction.- 7.2 Measurement of Rotation.- 7.3 Rotational Motion.- 7.4 Equations of Rotational Motion.- 7.5 Radial Acceleration.- 7.6 Centripetal Force.- 7.7 Orbital Motion and Gravitation.- 8 Rotational Dynamics.- 8.1 Introduction.- 8.2 Moment of Inertia and Torque.- 8.3 Rotational Kinetic Energy.- 8.4 Power.- 8.5 Angular Momentum.- 8.6 Conservation of Angular Momentum.- 9 Kinetic Theory of Gases and the Concept of Temperature.- 9.1 Introduction.- 9.2 Molecular Weight.- 9.3 Thermometers.- 9.4 Ideal Gas Law and Absolute Temperature.- 9.5 Kinetic Theory of Gas Pressure.- 9.6 Kinetic Theory of Temperature.- 9.7 Measurement of Heat.- 9.8 Specific Heats of Gases.- 9.9 Work Done by a Gas.- 9.10 First Law of Thermodynamics.- Supplement 9.1 Maxwell-Boltzmann Statistical Distribution.- 10 Oscillatory Motion.- 10.1 Introduction.- 10.2 Characterization of Springs.- 10.3 Frequency and Period.- 10.4 Amplitude and Phase Angle.- 10.5 Oscillation of a Spring.- 10.6 Energy of Oscillation.- 11 Wave Motion.- 11.1 Introduction.- 11.2 Wavelength, Velocity, Frequency, and Amplitude.- 11.3 Traveling Waves in a String.- 11.4 Energy Transfer of a Wave.- 12 Interference of Waves.- 12.1 Introduction.- 12.2 The Superposition Principle.- 12.3 Interference from Two Sources.- 12.4 Double Slit Interference of Light.- 12.5 Single Slit Diffraction.- 12.6 Resolving Power.- 12.7 X-Ray Diffraction by Crystals: Bragg Scattering.- 12.8 Standing Waves.- 13 Electrostatics.- 13.1 Introduction.- 13.2 Attraction and Repulsion of Charges.- 13.3 Coulomb's Law.- 13.4 Charge of an Electron.- 13.5 Superposition Principle.- 14 The Electric Field and the Electric Potential.- 14.1 Introduction.- 14.2 The Electric Field.- 14.3 Electrical Potential Energy.- 14.4 Electric Potential.- 14.5 The Electron Volt.- 14.6 Electromotive Force.- 14.7 Capacitance.- 15 Electric Current.- 15.1 Introduction.- 15.2 Motion of Charges in an Electric Field.- 15.3 Electric Current.- 15.4 Resistance and Resistivity.- 15.5 Resistances in Series and Parallel.- 15.6 Kirchhoff's Rules.- 15.7 Ammeters and Voltmeters.- 15.8 Power Dissipation by Resistors.- 15.9 Charging a Capacitor-RC Circuits.- 16 Magnetic Fields and Electromagnetic Waves.- 16.1 Introduction.- 16.2 Magnetic Fields.- 16.3 Force on Current-Carrying Wires.- 16.4 Torque on a Current Loop.- 16.5 Magnetic Dipole Moment.- 16.6 Force on a Moving Charge.- 16.7 The Hall Effect.- 16.8 Electromagnetic Waves: The Nature of Light.- 17 The Beginning of the Quantum Story.- 17.1 Introduction.- 17.2 Blackbody Radiation.- 17.3 The Photoelectric Effect.- 17.4 Further Evidence for the Photon Theory.- Supplement 17.1 Momentum of the Photon.- 18 Atomic Models.- 18.1 Introduction.- 18.2 The Rutherford Model.- 18.3 The Spectrum of Hydrogen.- 18.4 The Bohr Atom.- 18.5 The Franck-Hertz Experiment.- 19 Fundamental Principles of Quantum Mechanics.- 19.1 Introduction.- 19.2 De Brogue's Hypothesis and Its Experimental Verification.- 19.3 Nature of the Wave.- 19.4 The Uncertainty Principle.- 19.5 Physical Origin of the Uncertainty Principle.- 19.6 Matter Waves and the Uncertainty Principle.- 19.7 Velocity of the Wave Packet: Group Velocity.- 19.8 The Principle of Complementarity.- 20 An Introduction to the Methods of Quantum Mechanics.- 20.1 Introduction.- 20.2 The Schrödinger Theory of Quantum Mechanics.- 20.3 Application of the Schrödinger Theory.- 21 Quantum Mechanics of Atoms.- 21.1 Introduction.- 21.2 Outline of the Solution of the Schrödinger Equation for the H Atom.- 21.3 Physical Significance of the Results.- 21.4 Space Quantization: The Experiments.- 21.5 The Spin.- 21.6 Some Features of the Atomic Wavefunctions.- 21.7 The Periodic Table.- 22 Crystal Structures and Bonding in Solids.- 22.1 Introduction.- 22.2 Crystal Structures.- 22.3 Crystal Bonding.- 23 Free Electron Theories of Solids.- 23.1 Introduction.- 23.2 Classical Free Electron Model.- 23.3 Quantum-Mechanical Free Electron Model.- Supplement 23.1 The Wiedemann-Franz Law.- Supplement 23.2 Fermi-Dirac Statistics.- 24 Band Theory of Solids.- 24.1 Introduction.- 24.2 Bloch's Theorem.- 24.3 The Kronig-Penney Model.- 24.4 Tight-Binding Approximation.- 24.5 Conductors, Insulators, and Semiconductors.- 24.6 Effective Mass.- 24.7 Holes.- 25 Semiconductors.- 25.1 Introduction.- 25.2 Intrinsic Semiconductors.- 25.3 Extrinsic or Impurity Semiconductors.- 25.4 Electrical Conductivity of Semiconductors.- 25.5 Photoconductivity.- 26 Semiconductor Devices.- 26.1 Introduction.- 26.2 Metal-Metal Junction: The Contact Potential.- 26.3 The Semiconductor Diode.- 26.4 The Bipolar Junction Transistor (BJT).- 26.5 Field-Effect Transistors (FET).- 27 Some Basic Logic Circuits of Computers.- 27.1 Introduction.- 27.2 Rudiments of Boolean Algebra.- 27.3 Electronic Logic Circuits.- 27.4 Semiconductor Gates.- 27.5 NAND and NOR Gates.- 27.6 Other Gates, RTL and TTL.- 27.7 Memory Circuits.- 27.8 Clock Circuits.- 28 The Technology of Manufacturing Integrated Circuits.- 28.1 Introduction.- 28.2 Semiconductor Purification: Zone Refining.- 28.3 Single-Crystal Growth.- 28.4 The Processes of IC Production.- 28.5 Electronic Component Fabrication on a Chip.- 28.6 Conclusion.- Photo Credits.