Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data

Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how.

Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments.

When an organization manages its data effectively, its data science program becomes a fully scalable function that's both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise.

By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements:

  • Improving time-to-value with infused AI models for common use cases
  • Optimizing knowledge work and business processes
  • Utilizing AI-based business intelligence and data visualization
  • Establishing a data topology to support general or highly specialized needs
  • Successfully completing AI projects in a predictable manner
  • Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing

When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.



Autorentext

NEAL FISHMAN is a Distinguished Engineer and CTO of Data-Based Pathology at IBM. He is an IBM-certified Senior IT Architect and Open Group Distinguished Chief Architect.

COLE STRYKER is a journalist based in Los Angeles. He is the author of Epic Win for Anonymous and Hacking the Future.

Klappentext

PRAISE FOR SMARTER DATA SCIENCE

"This work provides benefit to a variety of roles, including architects, developers, product owners, and business executives. For organizations exploring AI, this book is the cornerstone to becoming successful."
Harry Xuegang Huang Ph.D., External Consultant, A.P. Moller Maersk

"Presents a holistic model that emphasizes how critical data and data management are in implementing successful value-driven data analytics and AI solutions. The book presents an elegant and novel approach to data management."
Ali Farahani, Ph.D., Former Chief Data Officer, County of Los Angeles; Adjunct Associate Professor, USC

"The authors seek and speak the truth, and penetrate into the core of the challenge most organizations face in finding value in their data. Our industry needs to move away from trying to connect the winning dots by 'magical' technologies and overly simplified approaches. This book provides the necessary guidance."
Jan Gravesen, M.Sc., IBM Distinguished Engineer, Director and Chief Technology Officer, IBM

BUILD A ROBUST INFORMATION ARCHITECTURE THAT SCALES AND DELIVERS LONG-TERM VALUE

Large organizations are racing to implement advanced data science. All too often, our AI endeavors turn out to be dead-end science projects that never deliver sustainable business value. What are we missing? In Smarter Data Science: Succeeding with Enterprise-Grade Data and AI Projects, you'll discover the pillars of information architecture that you must understand and implement.

Data analytics and AI only add value when they can predictably and consistently deliver business insights and scale across the organization. Smarter Data Science outlines an effective and practical way for organizing, managing, and evaluating data, so you can establish an information architecture to better drive AI and data science.

You'll learn how to:

  • Simplify data management, making data available when and where it is needed
  • Improve time to value for operationalizing AI use cases
  • Make AI and data insights accessible across the enterprise
  • Scale complex AI scenarios dynamically and in real time
  • Develop an information architecture that brings predictable, repeatable value


Inhalt

Foreword for Smarter Data Science xix

Epigraph xxi

Preamble xxiii

Chapter 1 Climbing the AI Ladder 1

Readying Data for AI 2

Technology Focus Areas 3

Taking the Ladder Rung by Rung 4

Constantly Adapt to Retain Organizational Relevance 8

Data-Based Reasoning is Part and Parcel in the Modern Business 10

Toward the AI-Centric Organization 14

Summary 16

Chapter 2 Framing Part I: Considerations for Organizations Using AI 17

Data-Driven Decision-Making 18

Using Interrogatives to Gain Insight 19

The Trust Matrix 20

The Importance of Metrics and Human Insight 22

Democratizing Data and Data Science 23

Aye, a Prerequisite: Organizing Data Must Be a Forethought 26

Preventing Design Pitfalls 27

Facilitating the Winds of Change: How Organized Data Facilitates Reaction Time 29

Quae Quaestio (Question Everything) 30

Summary 32

Chapter 3 Framing Part II: Considerations for Working with Data and AI 35

Personalizing the Data Experience for Every User 36

Context Counts: Choosing the Right Way to Display Data 38

Ethnography: Improving Understanding Through Specialized Data 42

Data Governance and Data Quality 43

The Value of Decomposing Data 43

Providing Structure Through Data Governance 43

Curating Data for Training 45

Additional Considerations for Creating Value 45

Ontologies: A Means for Encapsulating Knowledge 46

Fairness, Trust, and Transparency in AI Outcomes 49

Accessible, Accurate, Curated, and Organized 52

Summary 54

Chapter 4 A Look Back on Analytics: More Than One Hammer 57

Been Here Before: Reviewing the Enterprise Data Warehouse 57

Drawbacks of the Traditional Data Warehouse 64

Paradigm Shift 68

Modern Analytical Environments: The Data Lake 69

By Contrast 71

Indigenous Data 72

Attributes of Difference 73

Elements of the Data Lake 75

The New Normal: Big Data is Now Normal Data 77

Liberation from the Rigidity of a Single Data Model 78

Streaming Data 78

Suitable Tools for the Task 78

Easier Accessibility 79

Reducing Costs 79

Scalability 79

Data Management and Data Governance for AI 80

Schema-on-Read vs. Schema-on-Write 81

Summary 84

Chapter 5 A Look Forward on Analytics: Not Everything Can Be a Nail 87

A Need for Organization 87

The Staging Zone 90

The Raw Zone 91

The Discovery and Exploration Zone 92

The Aligned Zone 93

The Harmonized Zone 98

The Curated Zone 100

Data Topologies 100

Zone Map 103

Titel
Smarter Data Science
Untertitel
Succeeding with Enterprise-Grade Data and AI Projects
EAN
9781119693420
Format
E-Book (epub)
Hersteller
Veröffentlichung
14.04.2020
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
12.85 MB
Anzahl Seiten
304