I: Global and European Energy and Emissions Outlook.- 1 Introduction.- 1.1 Objectives.- 1.2 Models Used.- 1.3 Uncertainties.- 1.4 Plan of the Volume.- 2 Global Outlook.- 2.1 Economic Outlook.- 2.1.1 Economic and Population Trends.- 2.1.2 Economic Projections: the GDP Dynamics.- 2.1.3 Changes in per Capita GDP Profiles.- 2.2 Energy Outlook.- 2.2.1 Energy Resources and Prices.- 2.2.2 World Primary Energy Consumption.- 2.2.3 Energy Balances by Main Regions.- 2.3 Co2Emissions Outlook.- 2.3.1 Trends in Carbon Emissions.- 2.4 Comparisons of Projections of the World Energy System to 2030: Similarities and Differences.- 2.5 Conclusions.- 3 European Outlook.- 3.1 The Baseline Scenario: The European Economy to 2030.- 3.1.1 Introduction.- 3.1.2 Short Run Projections: 1995-2000.- 3.1.3 Long Run Projections: 2001-2030.- 3.1.4 Energy and Emissions Outlook.- II: Meeting The Kyoto Targets:The Role of Policy.- 4 Introduction.- 5 European Policies for Meeting the Kyoto Targets.- 5.1 Introduction.- 5.2 Scenario Assumptions.- 5.2.1 The KATREN Scenario.- 5.2.2 The CO2Tax Scenario.- 5.3 Katren Scenario Results.- 5.3.1 Overview.- 5.3.2 Primary Energy Demand.- 5.3.3 Power and Heat Generation.- 5.3.4 Final Energy Demand.- 5.3.5 CO2Emissions.- 5.4 The Co2tax Scenario.- 5.4.1 Overview.- 5.4.2 Primary Energy Demand.- 5.4.3 Power and Heat Generation.- 5.4.4 Final Energy Demand.- 5.4.5 CO2Emissions.- 5.5 Comparison of ScenarioS.- 5.6 Extrapolation to Eu-15.- 5.7 Evaluation of Costs.- 5.7.1 Definitions and Assumptions.- 5.8 Average Cost Computations.- 5.8.1 Model's Discount Rate.- 5.8.2 At 8% Discount Rate.- 5.9 Marginal Cost Computations.- 5.10 Other Economic Effects.- 6 International Dimensions.- 6.1 Introduction.- 6.1.1 Limits and Interest of a Sectoral Approach to the Evaluation of the Reduction Strategies.- 6.1.2 Effect of a Shadow Carbon Tax and Analysis of Reduction Potential According to Region.- 6.2 Conclusion.- III: Controlling Emissions in The Longer Run:The Role of Technology.- 7 Introduction to Part III.- 8 Power Generation Technology Clusters:Present Status and Its Potential.- 8.1 Nuclear Industry: A Paradigm in Crisis.- 8.1.1 Incremental Innovation in Nuclear Development.- 8.1.2 Renewed Technology Push? The Heritage of Advanced Reactor Programmes.- 8.1.3 Concerns with the Social Acceptability of Nuclear Power.- 8.1.4 Clean Coal Technologies.- 8.1.5 Fuel Cells for Stationary and Mobile Applications.- 8.1.6 Drawbacks to Diffusion.- 8.1.7 Wind Power Generation.- 8.1.8 Photovoltaic Electricity.- 8.1.9 PV Cell Producers.- 9 Technology Scenarios to 2030: Baseline and Alternative Technology Scenarios.- 9..- 9.1.1 Energy Technology Baseline Projection.- 9.1.2 World Energy Technology Scenarios.- 9.1.3 Technical Note: Running the Scenarios.- 9.2 Summary of Assumptions.- 10 Scenario Impacts on World Energy and Emissions.- 10.1 Baseline Electricity Trends.- 10.1.1 The Nuclear Scenario.- 10.1.2 The Clean Coal Scenario.- 10.1.3 The Gas Technology Scenario.- 10.1.4 The Fuel Cell Scenario.- 10.1.5 The Renewable Energy Technology Scenario.- 10.2 Conclusion.- 11 Technology Stories With Primes2 for the European Union; An Analysis For Demand Side, Power and Steam Generation Sector.- 11.1 Introduction.- 11.2 Definition of Technology Progress Stories.- 11.3 The Baseline Scenario.- 11.3.1 World Energy Prices.- 11.3.2 The Baseline Scenario.- 11.4 The Supply Side Stories.- 11.4.1 The Nuclear Story.- 11.4.2 The Clean Coal Story.- 11.4.3 The Gas Story.- 11.4.4 The Fuel Cells Story.- 11.4.5 The Renewable Story.- 11.4.6 The Pessimistic Supply Side Story.- 11.5 The Demand Side Story.- 11.5.1 Effects from Demand Side Progress.- 11.5.2 Effects from Combining Demand and Supply Progress.- 11.6 Concluding Remarks.- 12 Issues for Eu R&D Strategy.- 12.1 Medium Term Issues: Faster Adoption Of Improved Technologies.- 12.2 Long Term Issues: Need For More R&D.- 13 Carbon Removal, Fuel Cycle Shift and Efficiency Measures: A Sectoral View.- 13.1 Carbon Removal and Sequestration.- 13.2 Separation and Recovery Processes.- 13.2.1 CO2Disposal and Storage Processes.- 13.2.2 Costs and Potentials of Carbon Sequestration, Removal, and Storage.- 13.3 Other Reduction Options.- 13.3.1 Demand Side Measures.- 13.3.2 Dematerialization and Recycling.- 13.3.3 Efficiency Improvements and Technological Change.- 13.3.4 Fuel Mix Changes.- 13.3.5 Removal and Sequestration.- 13.3.6 Energy Conversion Efficiency.- 13.3.7 Fuel Mix Changes.- 13.4 The Industrial Sector.- 13.4.1 Dematerialization.- 13.4.2 Energy Efficiency Improvement and Process Changes.- 13.4.3 Fuel Mix Changes.- 13.4.4 Combined Measures in the Steel Industry.- 13.5 The Transportation Sector.- 13.5.1 Efficiency Improvements.- 13.5.2 Demand Side Measures.- 13.5.3 Fuel Switching.- 13.6 The Residential & Commercial Sector.- 13.6.1 Efficiency Improvements.- 13.6.2 Fuel Mix Changes.- 14 Appendix I: Detailed Macroeconomic and Sectoral Projections.- 15 Appendix II: Brief Description Of Models Used in the Study.- 15.1 The Primes Model.- 15.1.1 Introduction.- 15.1.2 Scope and Objectives.- 15.1.3 PRIMES Model Design.- 15.1.4 The PRIMES Modules.- 15.1.5 The Industrial Demand Model.- 15.1.6 The Households Sub Model.- 15.1.7 The Tertiary Sector Sub Model.- 15.1.8 The Power and Steam Generation Sub Model of PRIMES.- 15.1.9 The Oil Refinery Model of PRIMES.- 15.1.10 The Transport Model.- 15.1.11 Primary Energy Supply, Transformations and Pricing Sub Model.- 15.1.12 Global Environmental Constraints and Pollution Permits Market.- 15.1.13 General Structure of the Demand Side Sub Models.- 15.1.14 Industrial Sector.- 15.1.15 Tertiary Sector.- 15.1.16 Residential Sector.- 15.1.17 Transport Sector.- 15.2 The Poles Model.- 15.2.1 Main Characteristics of the POLES Model.- 15.2.2 Structure of the Model.- 15.2.3 Simulation of Primary Energy Consumption.- 15.2.4 Development and Production of Fossil Fuels.- 15.2.5 International Energy Prices and Trade.- List of Figures.- List of Tables.- References.