Orbital Mechanics for Engineering Students, Fourth Edition, is a key text for students of aerospace engineering. While this latest edition has been updated with new content and included sample problems, it also retains its teach-by-example approach that emphasizes analytical procedures, computer-implemented algorithms, and the most comprehensive support package available, including fully worked solutions, PPT lecture slides, and animations of selected topics. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject. - Provides a new chapter on the circular restricted 3-body problem, including low-energy trajectories - Presents the latest on interplanetary mission design, including non-Hohmann transfers and lunar missions - Includes new and revised examples and sample problems



Autorentext

Professor Curtis is former professor and department chair of Aerospace Engineering at Embry-Riddle Aeronautical University. He is a licensed professional engineer and is the author of two textbooks (Orbital Mechanics 3e, Elsevier 2013, and Fundamentals of Aircraft Structural Analysis, McGraw Hill 1997). His research specialties include continuum mechanics, structures, dynamics, and orbital mechanics.



Klappentext

Orbital Mechanics for Engineering Students, Fourth Edition, is a key text for students of aerospace engineering. While this latest edition has been updated with new content and included sample problems, it also retains its teach-by-example approach that emphasizes analytical procedures, computer-implemented algorithms, and the most comprehensive support package available, including fully worked solutions, PPT lecture slides, and animations of selected topics. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject.

  • Provides a new chapter on the circular restricted 3-body problem, including low-energy trajectories
  • Presents the latest on interplanetary mission design, including non-Hohmann transfers and lunar missions
  • Includes new and revised examples and sample problems


  • Inhalt

    1. Dynamics of Point Masses 2. The Two-Body Problem 3. Orbital Position as a Function of Time 4. Orbits in Three Dimensions 5. Preliminary Orbit Determination 6. Orbital Maneuvers 7. Relative Motion and Rendezvous 8. Interplanetary Trajectories 9. Lunar Trajectories 10. Introduction to Orbital Perturbations 11. Rigid Body Dynamics 12. Spacecraft Attitude Dynamics 13. Rocket Vehicle Dynamics

    Appendix A Physical Data

    Appendix B A Road Map

    Appendix C Numerical Integration of the N-Body Equations of Motion

    Appendix D MATLAB Scripts

    Appendix E Gravitational Potential of a Sphere

    Appendix F Computing the Difference Between Nearly Equal Numbers

    Appendix G Direction Cosine Matrix in Terms of the Unit Quaternion

    Titel
    Orbital Mechanics for Engineering Students
    Untertitel
    Revised Reprint
    EAN
    9780323853453
    Format
    E-Book (epub)
    Veröffentlichung
    31.08.2020
    Digitaler Kopierschutz
    Wasserzeichen
    Dateigrösse
    85.82 MB
    Anzahl Seiten
    780