This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.



Inhalt
Introduction and Overview.- System Identification: Formulation.- Large Deviations: An Introduction.- LDP under I.I.D. Noises.- LDP under Mixing Noises.- Applications to Battery Diagnosis.- Applications to Medical Signal Processing.-Applications to Electric Machines.- Remarks and Conclusion.- References.- Index
Titel
System Identification Using Regular and Quantized Observations
Untertitel
Applications of Large Deviations Principles
EAN
9781461462927
ISBN
978-1-4614-6292-7
Format
E-Book (pdf)
Herausgeber
Veröffentlichung
11.02.2013
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
1.37 MB
Anzahl Seiten
95
Jahr
2013
Untertitel
Englisch