R. W. DYSON There will be few readers of this book who are not aware of the contribution that polymers make to modern life. They are to be seen around the home, at work, in transport and in leisure pursuits. They take many forms which include plastic mouldings and extrusions, plastic film and sheet, plastic laminates (fibreglass and formica) rubber gloves, hoses, tyres and sealing rings, fibres for textiles and carpets and so on, cellular products for cushioning and thermal insulation, adhesives and coating materials such as paints and varnishes. The majority of these polymers are synthetic and are derived from oil products. The most important of these in terms of tonnage used are polymers based upon styrene, vinyl chloride, ethylene, propylene and butadiene among plastics and rubber materials, and nylons, polyethylenetere­ phthalate and polyacrylonitrile among fibres. The total amount of these polymers used each year runs into millions of tonnes. These polymers are sometimes known as commodity polymers because they are used for everyday artefacts. They are available in many grades and formats to meet a variety of applications and processing techniques. The and light stabilizers, properties can be adjusted by using additives such as heat plasticizers, and reinforcing materials. Often, grades are specially designed and formulated to meet particular requirements and, in a sense, these might be regarded as specialities. Much has been written about these materials elsewhere and they are not the concern of this book.



Inhalt

1 Polymer structures and general properties.- 1.1 Introduction.- 1.2 Polymer structures.- 1.3 Morphology and softening behavior.- 1.4 Amorphous polymers and softening behavior.- 1.5 Semi-crystalline polymers and softening behavior.- 1.6 Molecular weight.- 1.7 Copolymers.- 1.8 Chemical behavior.- 1.9 Solubility.- 1.10 Electrical properties.- 1.11 Conclusion.- Further reading.- 2 Polymerization.- 2.1 Introduction.- 2.2 Addition polymerization.- 2.2.1 Monomers.- 2.2.2 Free radical polymerization.- 2.2.3 Ionic polymerization.- 2.2.4 Catalytic surface polymerization.- 2.3 Step-growth polymerization.- 2.4 Copolymer formation.- 2.4.1 Step growth polymerization.- 2.4.2 Random copolymers.- 2.4.3 Block copolymers.- 2.4.4 Graft copolymers.- 2.5 Chemical conversion.- 2.6 Polyblends.- 2.7 Conclusion.- 3 High-temperature and fire-resistant polymers.- 3.1 Introduction.- 3.2 The need for thermally resistant polymers.- 3.3 Improving low-performance polymers for high-temperature.- 3.4 The need for fire-resistant polymers.- 3.5 Polymers for low fire hazards.- 3.6 Polymers for high temperature resistance.- 3.6.1 Fluoropolymers.- 3.6.2 Aromatic polymers.- 3.6.3 Hydrocarbon polymers.- 3.6.4 Polyethers.- 3.6.5 Polyphenyl sulphide.- 3.6.6 Polysulphones.- 3.6.7 Polyesters.- 3.6.8 Polyamides.- 3.6.9 Polyketones.- 3.7 Heterocyclic polymers.- 3.7.1 Polyimides.- 3.7.2 Other polymers.- Further reading.- 4 Hydrophilic polymers.- 4.1 Introduction.- 4.2 Natural polymers.- 4.2.1 Carbohydrates.- 4.2.2 Proteins.- 4.3 Semi-synthetic polymers.- 4.4 Synthetic polymers.- 4.4.1 Hydrogel.- 4.4.2 Polyacrylamide hydrophilic polymers.- 4.4.3 Polyvinyl alcohol.- 4.4.4 Polyvinyl pyrrolidone.- Further reading.- 5 Polymers with electrical and electromeric properties.- 5.1 Introduction.- 5.2 Conducting polymers.- 5.2.1 Introduction.- 5.2.2 Conduction mechanisms.- 5.2.3 Polyacetylene.- 5.2.4 Polyparaphenylenes (PPP).- 5.2.5 Polypyrrole.- 5.2.6 Other important conducting polymers.- 5.2.7 Organometallic polymers.- 5.2.8 Applications for conducting polymers.- 5.3 Photoconducting polymers.- 5.4 Polymers in non-linear optics.- 5.5 Polymers with piezoelectric, pyroelectric and ferroelectric properties.- 5.5.1 Introduction.- 5.5.2 Polyvinylidene fluoride (CH2CF2).- 5.5.3 Polyvinylidene fluoride-trifluoroethylene copolymers (PVDF-TrF).- 5.5.4 Other materials.- 5.5.5 Applications.- 5.6 Photoresists for semiconductor fabrication.- 5.6.1 Introduction.- 5.6.2 Negative photoresists.- 5.6.3 Positive photoresists.- 5.6.4 Electron beam lithography.- 5.6.5 Plasma developable photoresists.- References.- 6 Ionic polymers.- 6.1 Introduction.- 6.2 Classification.- 6.2.1 Type of bound ion.- 6.2.2 Position of the bound ion.- 6.2.3 Amount of bound ion.- 6.2.4 Type of counter-ion.- 6.2.5 The backbone.- 6.3 Synthesis.- 6.4 Physical properties and applications.- 6.4.1 Ionic cross-linking.- 6.4.2 Ion-exchange.- 6.4.3 Hydrophilicity.- 6.5 lonomers based on polyethylene.- 6.6 Elastomeric ionomers.- 6.7 Ionomers based on polystyrene.- 6.8 Ionomers based on polytetrafluoroethylene.- 6.9 Ionomers with polyaromatic backbones.- 6.10 Polyelectrolytes for ion-exchange.- 6.11 Polyelectrolytes based on carboxylates.- 6.12 Polymers with integral ions.- 6.12.1 Halato-telechelic polymers (HTPs).- 6.12.2 Ionenes.- 6.12.3 Polyethylenimine (PEI).- 6.13 Polyelectrolyte complexes.- 6.14 Blends of polymers and salts.- 6.15 Biological and inorganic ionic polymers.- 6.16 Conclusions.- References.- 7 Polyurethanes.- 7.1 Introduction.- 7.2 Chemical aspects.- 7.2.1 Reactions.- 7.2.2 Molecular structures.- 7.2.3 Component materials.- 7.3 Product types.- 7.3.1 Foams.- 7.3.2 RIM and RRIM.- 7.3.3 Thermoplastic polyurethanes.- 7.3.4 Rubbers.- 7.3.5 Fibres, coatings and adhesives.- 7.4 Conclusion.- References and further reading.

Titel
Specialty Polymers
EAN
9781461578949
Format
E-Book (pdf)
Hersteller
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen