This superb source of quickly accessible and carefully selected information includes: *Fundamentals of DC and AC *Electric and magnetic Fields*Networks *Signals & Systems *Digital & Analog Electronics and *Power Supplies. The Pocket Reference contains the basics of electrical engineering and electronics in a single, logically-organized, compact volume. Key features to consider:
Each chapter is a self-contained unit, incorporating important terms and definitions, symbols and units, formulas, rules and theorems, plus many examples and applications.
More than 500 diagrams and figures plus 60 tables and frames make essential information fast and easy to find.
Appendices list useful mathematical relations in a notation geared to electrical engineering, as well as contain dozens of helpful tables.
No other reference source concentrates so much practical fundamental into such a compact and valuable package for professionals and students.
Klappentext
This is a superb source of quickly accessible information on the whole area of electrical engineering and electronics. It serves as a concise and quick reference, with self-contained chapters comprising all important expressions, formulas, rules and theorems, as well as many examples and applications.
Inhalt
1 DC Systems.- 1.1 Basic Quantities, Basic Laws.- 1.1.1 Electric Charge.- 1.1.2 Electric Current.- 1.1.3 Voltage and Potential.- 1.1.4 Ohm's Law.- 1.1.5 Resistance and Conductance.- 1.1.6 Temperature Dependence of Resistance.- 1.1.7 Inductance.- 1.1.8 Capacitance.- 1.1.9 Ideal Voltage Source.- 1.1.10 Ideal Current Source.- 1.1.11 Kirchhoff's Law.- 1.1.11.1 Kirchhoff's First Law (Current Law).- 1.1.11.2 Kirchhoff's Second Law (Voltage Law).- 1.1.12 Power and Energy.- 1.1.12.1 Energy and Power in a Resistor.- 1.1.12.2 Energy in an Inductor.- 1.1.12.3 Energy in a Capacitor.- 1.1.13 Efficiency.- 1.1.14 Maximum Power Transfer.- 1.2 Basic Circuits.- 1.2.1 Real Voltage and Current Sources.- 1.2.1.1 Real Voltage Source.- 1.2.1.2 Real Current Source.- 1.2.1.3 Voltage-Current Source Conversion.- 1.2.2 Circuit Elements in Series and Parallel.- 1.2.2.1 Series Combination of Resistors.- 1.2.2.2 Parallel Combination of Resistors.- 1.2.2.3 Series Combination of Conductances.- 1.2.2.4 Parallel Combination of Conductances.- 1.2.2.5 Series Combination of Inductances.- 1.2.2.6 Parallel Combination of Inductances.- 1.2.2.7 Series Combination of Capacitances.- 1.2.2.8 Parallel Combination of Capacitances.- 1.2.3 Star-Delta Transformation.- 1.2.4 Voltage and Current Divider.- 1.2.4.1 Voltage Divider.- 1.2.4.2 Current Divider.- 1.2.4.3 Capacitive and Inductive Dividers.- 1.2.5 RC and RL Combinations.- 1.2.5.1 Series Combination of R and C Driven by a Voltage Source.- 1.2.5.2 Series Combination of R and C Driven by a Current Source.- 1.2.5.3 Parallel Combination of R and C Driven by a Current Source.- 1.2.5.4 Parallel Combination of R and C Driven by a Voltage Source.- 1.2.5.5 Series Combination of R and L Driven by a Voltage Source.- 1.2.5.6 Series Combination of R and L Driven by a Current Source.- 1.2.5.7 Parallel Combination of R and L Driven by a Voltage Source.- 1.2.5.8 Parallel Combination of R and L Driven by a Current Source.- 1.2.6 RLC Combinations.- 1.2.6.1 Series Combination of R, L and C.- 1.3 Calculation Methods for Linear Circuits.- 1.3.1 Rules for Signs.- 1.3.2 Circuit Calculation with Mesh and Node Analysis.- 1.3.3 Superposition.- 1.3.4 Mesh Analysis.- 1.3.5 Node Analysis.- 1.3.6 Thévenin's and Norton's Theorem.- 1.3.6.1 Calculating a Load Current by Thévenin's Theorem.- 1.3.6.2 Calculating a Current Within a Network.- 1.4 Notation Index.- 1.5 Further Reading.- 2 Electric Fields.- 2.1 Electrostatic Fields.- 2.1.1 Coulomb's Law.- 2.1.2 Definition of Electric Field Strength.- 2.1.3 Voltage and Potential.- 2.1.4 Electrostatic Induction.- 2.1.5 Electric Displacement.- 2.1.6 Dielectrics.- 2.1.7 The Coulomb Integral.- 2.1.8 Gauss's Law of Electrostatics.- 2.1.9 Capacitance.- 2.1.10 Electrostatic Field at a Boundary.- 2.1.11 Overview: Fields and Capacitances of Different Geometric Configurations.- 2.1.12 Energy in an Electrostatic Field.- 2.1.13 Forces in an Electrostatic Field.- 2.1.13.1 Force on a Charge.- 2.1.13.2 Force at the Boundary.- 2.1.14 Overview: Characteristics of an Electrostatic Field.- 2.1.15 Relationship between the Electrostatic Field Quantities.- 2.2 Static Steady-State Current Flow.- 2.2.1 Voltage and Potential.- 2.2.2 Current.- 2.2.3 Electric Field Strength.- 2.2.4 Current Density.- 2.2.5 Resistivity and Conductivity.- 2.2.6 Resistance and Conductance.- 2.2.7 Kirchhoff's Laws.- 2.2.7.1 Kirchhoff's First Law (Current Law).- 2.2.7.2 Kirchhoff's Second Law (Mesh Law).- 2.2.8 Static Steady-State Current Flow at Boundaries.- 2.2.9 Overview: Fields and Resistances of Different Geometric Configurations.- 2.2.10 Power and Energy in Static Steady-State Current Flow.- 2.2.11 Overview: Characteristics of Static Steady-State Current Flow.- 2.2.12 Relationship Between Quantities in Static Steady-StateCurrent Flow.- 2.3 Magnetic Fields.- 2.3.1 Force on a Moving Charge.- 2.3.2 Definition of Magnetic Flux Density.- 2.3.3 Biot-Savart's Law.- 2.3.4 Magnetic Field Strength.- 2.3.5 Magnetic Flux.- 2.3.6 Magnetic Voltage and Ampere's Law.- 2.3.7 Magnetic Resistance, Magnetic Conductance, Inductance.- 2.3.8 Materials in a Magnetic Field.- 2.3.8.1 Ferromagnetic Materials.- 2.3.9 Magnetic Fields at Boundaries.- 2.3.10 The Magnetic Circuit.- 2.3.11 Magnetic Circuit with a Permanent Magnet.- 2.3.12 Overview: Inductances of Different Geometric Configurations.- 2.3.13 Induction.- 2.3.13.1 Induction in a Moving Electrical Conductor.- 2.3.13.2 Faraday's Law of Induction.- 2.3.13.3 Self-Induction.- 2.3.14 Mutual Induction.- 2.3.15 Transformer Principle.- 2.3.16 Energy in a Magnetic Field.- 2.3.16.1 Energy in a Magnetic Circuit with an Air Gap.- 2.3.17 Forces in a Magnetic Field.- 2.3.17.1 Force on a Current-Carrying Conductor.- 2.3.17.2 Force at the Boundaries.- 2.3.18 Overview: Characteristics of a Magnetic Field.- 2.3.19 Relationship between the Magnetic Field Quantities.- 2.4 Maxwell's Equations.- 2.5 Notation Index.- 2.6 Further Reading.- 3 AC Systems.- 3.1 Mathematical Basics of AC.- 3.1.1 Sine and Cosine Functions.- 3.1.1.1 Addition of SinusoidalWaveforms.- 3.1.2 Complex Numbers.- 3.1.2.1 Complex Arithmetic.- 3.1.2.2 Representation of Complex Numbers.- 3.1.2.3 Changing Between Different Representations.- 3.1.3 Complex Calculus.- 3.1.3.1 Complex Addition and Subtraction.- 3.1.3.2 Multiplication of Complex Numbers.- 3.1.4 Overview: Complex Number Arithmetic.- 3.1.5 The Complex Exponential Function.- 3.1.5.1 Exponential Function with Imaginary Exponents.- 3.1.5.2 Exponential Function with Complex Exponents.- 3.1.6 Trigonometric Functions with Complex Arguments.- 3.1.7 From Sinusoidal Waveforms to Phasors.- 3.1.7.1 Complex Magnitude.- 3.1.7.2 Relationship Between SinusoidalWaveforms and Phasors.- 3.1.7.3 Addition and Subtraction of Phasors.- 3.2 Sinusoidal Waveforms.- 3.2.1 Characteristics of SinusoidalWaveforms.- 3.2.2 Characteristics of Nonsinusoidal Waveforms.- 3.3 Complex Impedance and Admittance.- 3.3.1 Impedance.- 3.3.2 Complex Impedance of Passive Components.- 3.3.2.1 Resistor.- 3.3.2.2 Inductor.- 3.3.2.3 Capacitor.- 3.3.3 Admittance.- 3.3.4 Complex Admittance of Passive Components.- 3.3.5 Overview: Complex Impedance.- 3.4 Impedance of Passive Components.- 3.5 Combinations of Passive Components.- 3.5.1 Series Combinations.- 3.5.1.1 General Case.- 3.5.1.2 Resistor and Inductor in Series.- 3.5.1.3 Resistor and Capacitor in Series.- 3.5.1.4 Resistor, Inductor and Capacitor in Series.- 3.5.2 Parallel Combinations.- 3.5.2.1 General Case.- 3.5.2.2 Resistor and Inductor in Parallel.- 3.5.2.3 Resistor and Capacitor in Parallel.- 3.5.2.4 Resistor, Inductor and Capacitor in Parallel.- 3.5.3 Overview of Series a…