OpenGL® Shading Language, Third Edition, extensively updated for OpenGL 3.1, is the experienced application programmer's guide to writing shaders. Part reference, part tutorial, this book thoroughly explains the shift from fixed-functionality graphics hardware to the new era of programmable graphics hardware and the additions to the OpenGL API that support this programmability. With OpenGL and shaders written in the OpenGL Shading Language, applications can perform better, achieving stunning graphics effects by using the capabilities of both the visual processing unit and the central processing unit.

In this book, you will find a detailed introduction to the OpenGL Shading Language (GLSL) and the new OpenGL function calls that support it. The text begins by describing the syntax and semantics of this high-level programming language. Once this foundation has been established, the book explores the creation and manipulation of shaders using new OpenGL function calls.

OpenGL® Shading Language, Third Edition, includes updated descriptions for the language and all the GLSL entry points added though OpenGL 3.1, as well as updated chapters that discuss transformations, lighting, shadows, and surface characteristics. The third edition also features shaders that have been updated to OpenGL Shading Language Version 1.40 and their underlying algorithms, including

  • Traditional OpenGL fixed functionality
  • Stored textures and procedural textures
  • Image-based lighting
  • Lighting with spherical harmonics
  • Ambient occlusion and shadow mapping
  • Volume shadows using deferred lighting
  • Ward's BRDF model

The color plate section illustrates the power and sophistication of the OpenGL Shading Language. The API Function Reference at the end of the book is an excellent guide to the

API entry points that support the OpenGL Shading Language.



Autorentext

Randi J. Rost was a core contributor to the development of the OpenGL Shading Language and the OpenGL API that supports it, as well as one of the first programmers to design and implement shaders using this technology. Randi works at Intel.

Bill Licea-Kane is chair of the ARB OpenGL Shading Language workgroup. Bill is a principal member of technical staff at AMD.



Inhalt

Foreword to the Second Edition xxi

Foreword to the First Edition xxv

Preface xxix

About the Authors xxxv

About the Contributors xxxvii

Acknowledgments xxxix

Chapter 1: Review of OpenGL Basics 1

1.1 OpenGL History 1

1.2 OpenGL Evolution 4

1.3 Execution Model 5

1.4 The Framebuffer 6

1.5 State 9

1.6 Processing Pipeline 9

1.7 Drawing Geometry 11

1.8 Drawing Images 19

1.9 Coordinate Transforms 22

1.10 Texturing 27

1.11 Summary 33

1.12 Further Information 33

Chapter 2: Basics 35

2.1 Introduction to the OpenGL Shading Language 35

2.2 Why Write Shaders? 37

2.3 OpenGL Programmable Processors 38

2.4 Language Overview 47

2.5 System Overview 54

2.6 Key Benefits 59

2.7 Summary 61

2.8 Further Information 63

Chapter 3: Language Definition 65

3.1 Example Shader Pair 65

3.2 Data Types 67

3.3 Initializers and Constructors 76

3.4 Type Conversions 78

3.5 Qualifiers and Interface to a Shader 79

3.6 Flow Control 84

3.7 Operations 88

3.8 Preprocessor 93

3.9 Preprocessor Expressions 96

3.10 Error Handling 97

3.11 Summary 98

3.12 Further Information 98

Chapter 4: The OpenGL Programmable Pipeline 101

4.1 The Vertex Processor 102

4.2 The Fragment Processor 106

4.3 Built-in Uniform Variables 110

4.4 Built-in Constants 110

4.5 Interaction with OpenGL Fixed Functionality 111

4.6 Summary 115

4.7 Further Information 115

Chapter 5: Built-in Functions 117

5.1 Angle and Trigonometry Functions 118

5.2 Exponential Functions 121

5.3 Common Functions 122

5.4 Geometric Functions 134

5.5 Matrix Functions 136

5.6 Vector Relational Functions 138

5.7 Texture Access Functions 140

5.8 Fragment Processing Functions 176

5.9 Noise Functions 177

5.10 Summary 178

5.11 Further Information 178

Chapter 6: Simple Shading Example 181

6.1 Brick Shader Overview 182

6.2 Vertex Shader 183

6.3 Fragment Shader 189

6.4 Observations 196

6.5 Summary 197

6.6 Further Information 197

Chapter 7: OpenGL Shading Language API 199

7.1 Obtaining Version Information 200

7.2 Creating Shader Objects 203

7.3 Compiling Shader Objects 204

7.4 Linking and Using Shaders 205

7.5 Cleaning Up 210

7.6 Query Functions 211

7.7 Specifying Vertex Attributes 217

7.8 Specifying Uniform Variables 226

7.9 Samplers 238

7.10 Multiple Render Targets 239

7.11 Development Aids 240

7.12 Implementation-Dependent API Values 241

7.13 Application Code for Brick Shaders 242

7.14 Summary 247

7.15 Further Information 248

Chapter 8: Shader Development 251

8.1 General Principles 251

8.2 Performance Considerations 254

8.3 Shader Debugging 256

8.4 Shader Development Tools 258

8.5 Scene Graphs 263

8.6 Summary 266

8.7 Further Information 266

Chapter 9: Emulating OpenGL Fixed Functionality 269

9.1 Transformation 270

9.2 Light Sources 273

9.3 Material Properties and Lighting 277

9.4 Two-Sided Lighting 279

9.5 No Lighting 280

9.6 Fog 281

9.7 Texture Coordinate Generation 283

9.8 User Clipping 286

9.9 Texture Application 286

9.10 Matrices 288

9.11 Operating on the Current Matrices 291

9.12 Summary 294

9.13 Further Information 294

Chapter 10: Stored Texture Shaders 297

10.1 Access to Texture Maps from a Shader 298

10.2 Simple Texturing Example 300

10.3 Multitexturing Example 303

10.4 Cube Mapping Example 309

10.5 Another Environment Mapping Example 312

10.6 Glyph Bombing 316

10.7 Summary 326

10.8 Further Information 326

Chapter 11: Procedural Texture Shaders 329

11.1 Regular Patterns 331

11.2 Toy Ball 336

11.3 Lattice 344

11.4 Bump Mapping 345

11.5 Summary 354

11.6 Further Information 354

Chapter 12: Lighting 357

12.1 Hemisphere Lighting 357

12.2 Image-Based Lighting 361

12.3 Lighting with Spherical Harmonics 365

12.4 The Überlight Shader 369

12.5 Summary 376

12.6 Further Information 376

Chapter 13: Shadows 379

13.1 Ambient Occlusion 380

13.2 Shadow Maps 385

13.3 Deferred Shading for Volume Shadows 392

13.4 Summary 400

13.5 Further Information 400

Chapter 14: Surface Characteristics 403

14.1 Refraction 404

14.2 Diffraction 410

14.3 BRDF Models 415

14.4 Polynomial Texture Mapping with BRDF Data 422

14.5 Summary 431

14.6 Further Information 432

Chapter 15: Noise 435

15.1 Noise Defined 436

15.2 Noise Textures 444

15.3 Trade-offs 447

15.4 A Simple Noise Shader 448

15.5 Turbulence 451

15.6 Granite 453

15.7 Wood 454

15.8 Summary 457

15.9 Further Information 458

Chapter 16: Animation 461

16.1 On/Off 462

16.2 Threshold 463

16.3 Trans…

Titel
OpenGL Shading Language
EAN
9780321669193
Format
E-Book (pdf)
Hersteller
Veröffentlichung
08.07.2009
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
12.99 MB