As speech processing devices like mobile phones, voice controlled devices, and hearing aids have increased in popularity, people expect them to work anywhere and at any time without user intervention. However, the presence of acoustical disturbances limits the use of these applications, degrades their performance, or causes the user difficulties in understanding the conversation or appreciating the device. A common way to reduce the effects of such disturbances is through the use of single-microphone noise reduction algorithms for speech enhancement. The field of single-microphone noise reduction for speech enhancement comprises a history of more than 30 years of research. In this survey, we wish to demonstrate the significant advances that have been made during the last decade in the field of discrete Fourier transform domain-based single-channel noise reduction for speech enhancement.Furthermore, our goal is to provide a concise description of a state-of-the-art speech enhancement system, and demonstrate the relative importance of the various building blocks of such a system. This allows the non-expert DSP practitioner to judge the relevance of each building block and to implement a close-to-optimal enhancement system for the particular application at hand. Table of Contents: Introduction / Single Channel Speech Enhancement: General Principles / DFT-Based Speech Enhancement Methods: Signal Model and Notation / Speech DFT Estimators / Speech Presence Probability Estimation / Noise PSD Estimation / Speech PSD Estimation / Performance Evaluation Methods / Simulation Experiments with Single-Channel Enhancement Systems / Future Directions
Autorentext
Dr. ir. Richard C. Hendriks obtained his M.Sc. and Ph. D. degrees (both cum laude) in electrical engineering from Delft University of Technology, Delft, The Netherlands, in 2003 and 2008, respectively. From 2003 till 2007 he was a Ph.D. researcher at Delft University of Technology, Delft, The Netherlands. From 2007 till 2010 he was a postdoctoral researcher at Delft University of Technology. Since 2010 he is an assistant professor in the Signal and Information Processing Lab of the faculty of Electrical Engineering, Mathematics and Computer Science at Delft University of Technology. In the autumn of 2005, he was a Visiting Researcher at the Institute of Communication Acoustics, Ruhr-University Bochum, Bochum, Germany. From March 2008 till March 2009 he was a visiting researcher at Oticon A/S, Copenhagen, Denmark. His main research interests are digital speech and audio processing, including single-channel and multi-channel acoustical noise reduction, speech enhancement and intelligibility improvement.